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Macaroons “cheat-sheet”
● Macaroon is a bearer token.
● Macaroon contains zero or more caveats.
● Each caveat limits something about the macaroon:

who can use it, 

when they can use it, or

what they do with it.

● Anyone can add a caveat to a macaroon

… creating a new, more limited macaroon.

● No one can remove a caveat from a macaroon



Bearer Tokens
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Six caveats supported
● Unfortunately, there are no standard caveats.  Here are those that dCache 

understands:
● Three path caveats:

● root:<path> – chroot into this directory,
● home:<path> – the user's home directory (not currently used),
● path:<path> – only show this path.

● Two context caveats:
● before:<timestamp> – when macaroon expires,
● ip:<netmask list> – reduce which clients can use macaroon.

● One permissions caveat:
● activity:<comma-list> – what operations are allowed.
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Activity caveats – limited what is allowed
activity:<activity-list>

where <activity-list> is a comma-separated list of allowed activities; 
e.g.,

activity:DOWNLOAD,LIST

● Possible activities are:

DOWNLOAD, UPLOAD, DELETE, MANAGE, LIST, READ_METADATA, UPDATE_METADATA.

● Allowed activity may be further reduced by adding more activity: 
caveats.

No activity: caveat means client can do whatever the user requesting the 
macaroon can do.
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What are macaroons good for?

Enforcing catalogue permissions

Rucio1. Request access
to data

2. Request a macaroon
3. Add caveats

4. Access data



Usage of Macaroons
● Nothing yet in production, but …
● SurfSARA have multiple projects exploring macaroons:

● As dataset export for LOFAR (currently separate server)
● Project MinE: outsource authz decision to UMCU (university medical 

center Utrecht)
● Sharing data without moving it from dCache to  ownCloud
● Delegated access to storage; i.e., jobs without X.509 proxy.

● SWESTORE – the portal use-case: avoid proxying data transfers.



Current macaroon support in storage systems
● dCache fully supported since v3.2

available in all supported versions of dCache

● DPM experimental support in v1.10

currently not recommended in production

● xrootd coming soon (“this year”)

code currently being accepted upstream

● EOS not yet, but would add if there’s demand

would use the xrootd plugin – can investigate once plugin finalised.

● StoRM plans to add bearer token authn

Initial work focusing on JWT



What’s coming next?
● New features (in dCache) …

● ability to cancel subset of macaroons.
● client identifier caveat.
● ability to request macaroon outside of WebDAV.
● support in more protocols (dcap, ftp, …).

● Work with dCache sites to gain experience.
● Explore WLCG use-cases:

HTTP 3rd party transfer, …



Summary

● Macaroons provide a solution for delegated authorisation.
● Autonomous attenuation means macaroons scale.
● Macaroons have many potential uses.
● Sites are now exploring how to use macaroons.
● Other storage systems are exploring macaroons.



Thanks for listening!



Backup slides



Aren't these like SciTokens?



SciTokens vs macaroons: comparison cheat-sheet

● Who issues them?

(SciToken: “central” service, macaroon: service)
● How expensive to generate?

(SciToken: a few Hz, macaroon: a few kHz)
● Autonomous reduced token?

(SciToken: no, macaroon: yes)
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