
Macaroons

Paul Millar
(on behalf of the dCache team)

CHEP 2018 at Sophia, Bulgaria; 2018-07-09
https://indico.cern.ch/event/587955/

Macaroons “cheat-sheet”
● Macaroon is a bearer token.
● Macaroon contains zero or more caveats.
● Each caveat limits something about the macaroon:

who can use it,

when they can use it, or

what they do with it.

● Anyone can add a caveat to a macaroon

… creating a new, more limited macaroon.

● No one can remove a caveat from a macaroon

Bearer Tokens

Photo by Alan Cleaver (CC-BY)

How caveats work?

Storage System

Data Portal

Diagram idea stolen from Tigran

How caveats work?

Storage System

Data Portal

Diagram idea stolen from Tigran

How caveats work?

Storage System

Data Portal

Diagram idea stolen from Tigran

How caveats work?

Storage System

Data Portal

Diagram idea stolen from Tigran

How caveats work?

Storage System

Data Portal

Diagram idea stolen from Tigran

How caveats work?

Storage System

Data Portal

{DOWNLOAD,UPLOAD}

{+path:/data}{+read-only}

{+path:/data/img.jpg,ip:1.2.3.4}

Diagram idea stolen from Tigran

Six caveats supported
● Unfortunately, there are no standard caveats. Here are those that dCache

understands:
● Three path caveats:

● root:<path> – chroot into this directory,
● home:<path> – the user's home directory (not currently used),
● path:<path> – only show this path.

● Two context caveats:
● before:<timestamp> – when macaroon expires,
● ip:<netmask list> – reduce which clients can use macaroon.

● One permissions caveat:
● activity:<comma-list> – what operations are allowed.

d1

d2

How path caveats affect namespace

/
foo

bar
calib

baz

b2

data

mc

d1

d2

bar
calib

baz

b2

/

mc

/

calib
baz

b2

data

Adding caveat
root:/data

Adding caveat
path:/data/calib

Activity caveats – limited what is allowed
activity:<activity-list>

where <activity-list> is a comma-separated list of allowed activities;
e.g.,

activity:DOWNLOAD,LIST

● Possible activities are:

DOWNLOAD, UPLOAD, DELETE, MANAGE, LIST, READ_METADATA, UPDATE_METADATA.

● Allowed activity may be further reduced by adding more activity:
caveats.

No activity: caveat means client can do whatever the user requesting the
macaroon can do.

Community Portals

GET

307

GET

4. Request data directly from dCache

2. Request a macaroon

User
Database

3. Add caveats

What are macaroons good for?

What are macaroons good for?

Delegating/Sharing

3. Send to colleague
(e.g. via email)

1. Request a macaroon

GET/PUT/DELETE

4. Use macaroon

2. Add caveats

FTS

What are macaroons good for?

HTTP 3rd party copies (FTS creates macaroon)

2. Request a
macaroon

3. Add caveats

4. COPY with
embedded macaroon

5. GET with macaroon

1. Request copy

FTS

What are macaroons good for?

HTTP 3rd party copies (user creates macaroons)

1. Request
macaroons

4. GET with macaroon

3. COPY request

2. Request
copy

1. Request
macaroons

DATA

What are macaroons good for?

Enforcing catalogue permissions

Rucio1. Request access
to data

2. Request a macaroon
3. Add caveats

4. Access data

Usage of Macaroons
● Nothing yet in production, but …
● SurfSARA have multiple projects exploring macaroons:

● As dataset export for LOFAR (currently separate server)
● Project MinE: outsource authz decision to UMCU (university medical

center Utrecht)
● Sharing data without moving it from dCache to ownCloud
● Delegated access to storage; i.e., jobs without X.509 proxy.

● SWESTORE – the portal use-case: avoid proxying data transfers.

Current macaroon support in storage systems
● dCache fully supported since v3.2

available in all supported versions of dCache

● DPM experimental support in v1.10

currently not recommended in production

● xrootd coming soon (“this year”)

code currently being accepted upstream

● EOS not yet, but would add if there’s demand

would use the xrootd plugin – can investigate once plugin finalised.

● StoRM plans to add bearer token authn

Initial work focusing on JWT

What’s coming next?
● New features (in dCache) …

● ability to cancel subset of macaroons.
● client identifier caveat.
● ability to request macaroon outside of WebDAV.
● support in more protocols (dcap, ftp, …).

● Work with dCache sites to gain experience.
● Explore WLCG use-cases:

HTTP 3rd party transfer, …

Summary

● Macaroons provide a solution for delegated authorisation.
● Autonomous attenuation means macaroons scale.
● Macaroons have many potential uses.
● Sites are now exploring how to use macaroons.
● Other storage systems are exploring macaroons.

Thanks for listening!

Backup slides

Aren't these like SciTokens?

SciTokens vs macaroons: comparison cheat-sheet

● Who issues them?

(SciToken: “central” service, macaroon: service)
● How expensive to generate?

(SciToken: a few Hz, macaroon: a few kHz)
● Autonomous reduced token?

(SciToken: no, macaroon: yes)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

