Overview of dCache Systems at BNL

Iris Wu Hiro Ito

Jane Liu

dCache workshop 2018
DESY, Hamburg Germany

Outline

Overview

Future operation

Needs help from developers

ATLAS dCache

Largest ATLAS T1 site

Core server 3.0.11,NFS: 3.0.38, pool:3.043

17.5 PB

TAPE backend

Belle II dCache

Belle II T1 site

Version 3.0.11

1.7 PB disk space

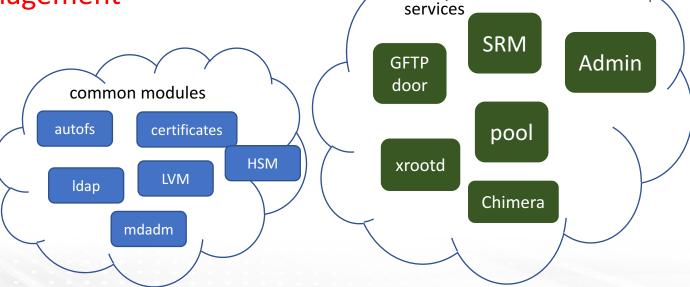
TAPE backend

Simon's dCache

Version 2.1.6

0.26PB disk space

PHENIX dCache


PHENIX experiment T0 site

In the progress of upgrade

TAPE backend

Puppet Management

- Efficient
- Automation

atlasdcache::pool::data:

dc016:

1:

diskspace: 51938544204217

lan: 1000 wan: 10 p2p: 20 pp: 16

rh: 1000 st: 2

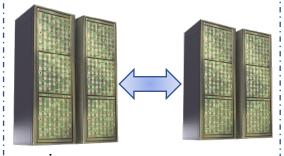
checksum: ADLER32

type: disk tags: CDCE disk: data

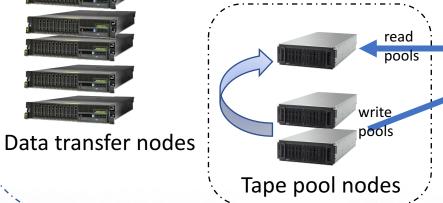
device: /dev/md0

NFS4.1/pNFS

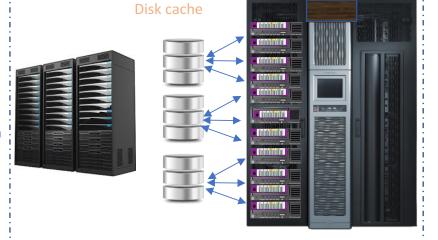
GFTP


dCache

Admin nodes

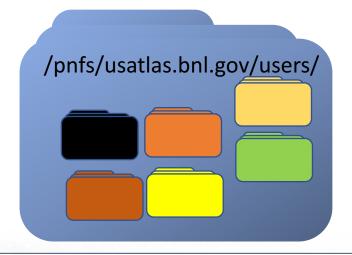


Disk pool nodes


primary secondary

Resilience Management

US ATLAS Tier1 dCache @BNL

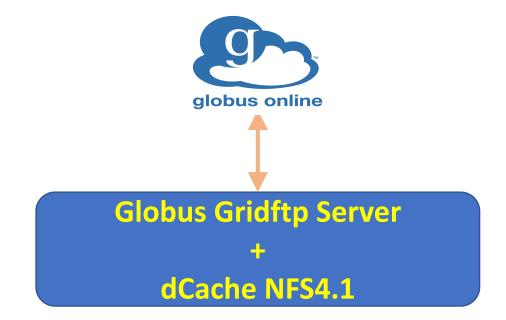


Protocols

- •NFS 4.1
- Mounted in the Linux farm
- –US ATLAS Tier3 facility

- XRootD
- –Read is in production
- –Write is tested through
- GSI authentication

Support of XRootD third party transfer?

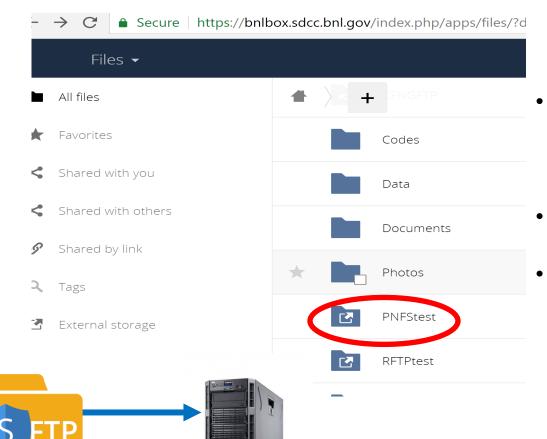


Protocols

dCache Native Gridftp Server

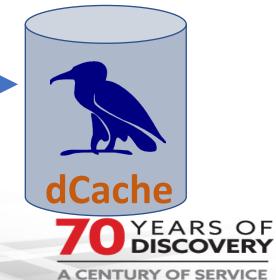
- Pros
 - It is a native dCache!!!
 - Performance and stability is great
- Cons
 - Can dCache developer keep supporting?
 - Can it be officially supported by Globus

- Pros
 - It is a native Globus. The server is always supported by Globus.
 - NFS4.1 is a standard.
- Cons
 - The performance is not as good as the dCache gridftp option.
 - The stability issue has been reported.

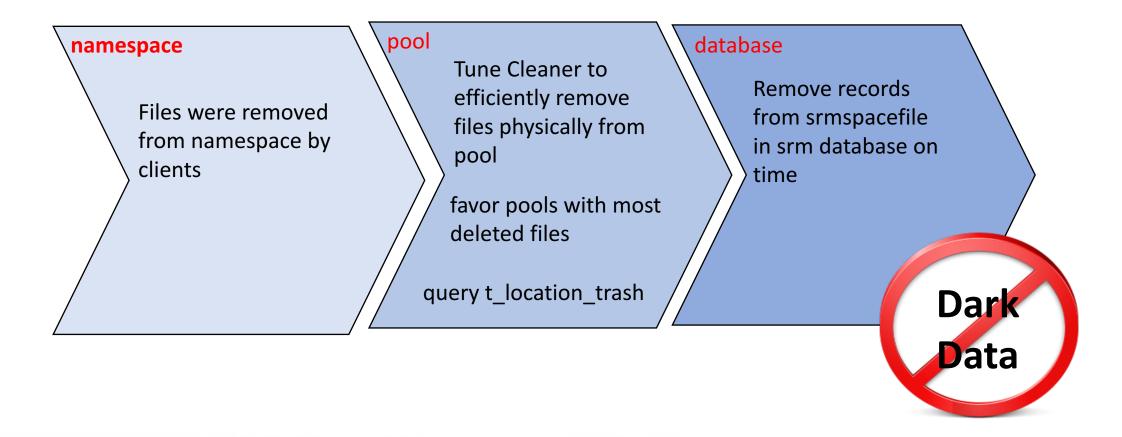


BNLBox (Cloud storage/Owncloud)

- Pros
 - Easiest to transfer data in/out dCache
 - Automatic sync
- Cons
 - SFTP can be a problematic.
- Can we natively support?
 - Like CERN box with EOS?


External Storage dCache NFS4.1 via SFTP

1111111



Scientific Data and Computing Center 7

Customization - Deletion

Customization— schema change

dcache. srmspacefile

id	vogroup	vorole	spacereservation	sizeinbytes	creationtime	pnfsid	state

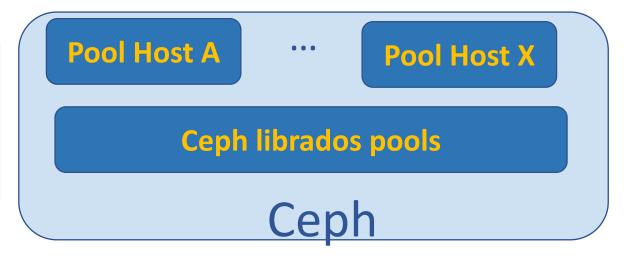
id	vogroup	vorole	spacereservation	sizeinbytes	creationtime	pnfsid	state	chimerapath

Future operation-Splitting read pools for Tape area

- Disk space crunch!
 - Various experiments and users have more data than the size of spinning disks available to them. And, it is expected to grow further.
- The tape storage is still cheaper than the spinning disks (or SSDs).
- Would like to use the archive storage (aka TAPE)
 as effective as reasonably possible.
 - TAPE requires a particular access to get the optimum performance.

read pools (Finite size) newly written HPSS disk cache files limited stage pools resource Tape write **HPSS Tape drives** pools **CHIMERID** to Non blocking **Namespace** pulling (ChimeraDB)

The callback option for the future?


Future operation — Ceph Pools

- Pros:
 - Separate pool service hosts from actual storages.
 - remove the association of files in Ceph pools with t_location
 - Erasure codes allows the resiliency without duplicate copy

Pool Host A
Pool A0--AN

Pool Host X
Pool X0--XN

Regular Storage

- Questions
 - Performance of partial read???
 - Scalability of Erasure code???

Needs help from developers

- continue the support for Ceph pools
- continue the support for Globus online
- support XRootD 3td party transfer
- the issue with Resilience Management

