
dCache events for users
Paul Millar

dCache Workshop 2018 at DESY, Hamburg, 2018-05-28
https://indico.desy.de/indico/event/19920/

What problems are we trying to solve?
● Users have an enriched view of data

How to keep this up-to-date?

● Users want to process incoming data
How to trigger analysis / metadata extraction / derived data ?

● Users want to stage files from tape efficiently

How to process files quickly once they become available?
● Users want to innovate with (many) existing storage systems

How to make this Just Work™ ?

Standard HTTP & the notification problem
Do something…

… ok.
Interactions:Interactions:

Works “out of
the box”

Something happened…

… ok.
Client events:

Yes, but kinda
badly.

Server events:
Something happened…Not at all

How to solve the “server events” problem
● 2000: various solutions introduced

Comet, BOSH, Bayeux, long-get, …
● 2006, W3C WHATWG standardised:

Server-Sent Events (SSE)
● Standard: HTML 5
● Solves the server events by layering

a new protocol on top of HTTP
● Client can avoid loosing events when disconnected

SSE: is it supported?

Source: https://caniuse.com/#feat=eventsource

SSE: is it supported: libraries

22 libraries in
12 languages

Source: https://en.wikipedia.org/wiki/Server-sent_events

How does it perform?

Source https://aquil.io/articles/a-comparison-between-websockets-server-sent-events-and-polling

dCache implementation of SSE

● Requires authentication: no anonymous event delivery.
● Available to all users out-of-the-box: no admin configuration
● Management API is documented with Swagger

Supports several, optional advanced features
● Metronome: a example event source for testing

(pluggable interface – you can add your own events!)

dCache support for SSE

● Simple model:
● Client creates a channel (the SSE endpoint)
● Client subscribes to events for that channel
● Events delivered to a channel

Compared to Kafka
● Benefits:

● No extra service to install,
● Built-in (user-driven) security model,
● No admin effort needed before users can start,
● Works with web-browsers,

● Disadvantages:
● Fewer out-of-the-box integration options,
● Event management API is dCache-specific,
● “Catch-up” event storage is an in-memory ring-buffer.

What users can use SSE for...

● Processing new data as it is ingested.
● Avoiding dark-data and dangling links in catalogues.
● Enforcing data placement rules.
● Triggering analysis after staging data.
● Avoiding custom clients.

… plus many other things

What will be available: dCache v4.2?

Simple example: metronome
● Send simple messages at a fixed rate

configurable from many kHz to every x seconds.
● Can limit the number of messages
● Intended to for demonstrations and to test clients are working correctly

… yeah, not really all that useful.

Metronome demo…

Coming soon: initial inotify
● See directory contents being created, deleted, renamed, …
● API is strongly based on Linux’s inotify.
● All doors/protocols supported.
● There are some limitations:

● Currently no IN_OPEN, IN_MODIFY, IN_ACCESS, IN_CLOSE_NOWRITE or
IN_CLOSE_WRITE events for files.

Use IN_ATTR after IN_CREATE as alternative to IN_CLOSE_WRITE

● Missing flags: IN_EXCL_UNLINK, IN_DONT_FOLLOW.
● No events from chimera CLI or manually editing DB tables.

Inotify demo …

Coming in the future

● Full inotify event support.
● Transfers started/concluded/progress.
● Changes in media availability:

Learn when data is staged or when last cache-copy is
removed.

● Quality-of-Service (QoS) changes:

Part of a larger work in revamping QoS support.

Thanks for listening!

Backup slides

How does it perform?

From “A comparison between WebSockets, server-sent events, and polling”, by Alexis Abril
https://aquil.io/articles/a-comparison-between-websockets-server-sent-events-and-polling

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

