
Chimera - a new, fast, extensible and Grid enabled namespace service

Author: Mr. Mkrtchyan Tigran, Dr. Fuhrmann Patrick, Mr. Gasthuber Martin
DESY, Hamburg, Germany

Abstract
After successfully implementing and deploying

the dCache system over the last years, one of the core
services, the namespace service, has faced additional and
completely new requirements. Most of them are caused by
the scaling of the system, the integration with Grid
services and the need for redundant (high availability)
configurations. The existing system, using the NFSv2
access path only, is easy to understand and is well
accepted by the users. It's intuitive for most users, but
failed when dealing with millions of entries (files) and
more sophisticated organisational schemes (metadata).
The new system should support a native programmable
interface (deeply coupled, yet fast), a 'classical' NFS path
(now version 3 at least), a dCache native access and an
SQL path allowing any type of metadata to be used in
complex queries. Extensions with other 'access paths' will
be possible. Based on the experience with the current
system we focus on the following requirements:

➢ large file support (64 Bit) + large number of files
(>108)

➢ fast
➢ platform independence (runtime + persistent objects)
➢ Grid name service integration
➢ custom dCache integration
➢ redundant, high available runtime configurations

(concurrent backup etc.)
➢ user accessible metadata (store and query)
➢ ACL support
➢ pluggable authentication (e.g. GSSAPI)
➢ external processes can register for namespace events

(e.g. removal/creation of files)

THE PROJECT GOAL
Modern experiments produce terabytes of data,

which have to be managed by tape storage systems. While
the user-intuitive way to access data is through filenames,
storage systems normally deal with tapes, offsets and
disks. A system, which could have a filesystem view from
one side and interacts with storage systems from the other
side became crucial. Based on our experience and actual
needs a list of requirements was compiled:

• Unique file ID independent from name
Filenames are not persistent, while data is. We can
rename files, but still are able to access the original
data;

• Name-to-ID and vice versa mapping
By referencing files in the storage system by ID we
need a possibility to find the file ID while users
will operate on filenames;

• Callback on filesystem evens, like remove and move

Removing a file in the filesystem has to trigger an
associated action of file removal in the storage
system. Moving a file from one directory to
another may trigger a migration of the file from
one storage system to another;

• Directory tags, inherited by subdirectories
A possibility to define default values, like OSM-
group or file-family, or on which tape-set a file has
to reside. Usually, directories are created prior to
files, and de-facto become a natural holder of
initial values;

• Metadata association with files
arbitrary metadata can be associated with files, in
particular storage system specific information like
tape name, offset and so on;

• Worm holes
A convenient feature: files that are not shown in
the directory listing, but are available in all
directories. Can be used for distributing
configuration files;

• Additional channel for the client to access
metadata

client applications have to be able to store and
retrieve metadata.

CURRENT SOLUTION
In 1997, we have introduced PNFS[1] – an NFS

server on top of a database. PNFS allows all NFSv2[4]
operations except actual data IO. The data access is
performed by native store/retrieve utilities of the storage
system. The implementation is based on a user-space NFS
daemon, which communicates with the DB-server through
a shared-memory block. The DB-server simulates a
filesystem on top of a gdbm database . Each subdirectory
can have its own DB-server, running as a separate
process. Access to metadata is done through a special file
name syntax.

Currently there are two HEP labs heavily relying
on PNFS – DESY and FNAL, and many others using
PNFS as a component of dCache in LCG2. At DESY 61
DB-server processes serving more than 3 million file
entries, which corresponds to 500TB of data in the HSM
with a 1KHz access rate. All databases together occupy
20GB of disk space.

PNFS is being used by various storage systems –
Enstore[2], OSM, dCache[3]. Enstore and OSM store
references to files – “bit file IDs”, which are used by the
HSM to identify files. dCache stores file locations, e.g.
pool names. In the past some experiment-specific file
access libraries used to store file locations in SHIFT
pools, now replaced by dCache.

Despite successful deployment of PNFS, we
found spots which may cause limitations in future.

➢ Max. file size 2 GB due to NFSv2 specification
➢ Metadata access only through NFS:
 no direct path for attached storage systems;
 all metadata types use the same channel and the

store:
 heavy access to metadata by storage system

has performance impacts on regular NFS
operations;

➢ Metadata are stored as BLOB:
 no metadata query functionality;

➢ No ACLs
➢ NFS security (= no security), although we can disable

some NFS operations (remove)

NEW IMPLEMENTATION
While the file size limitation is solved by a new NFSv3[5]
front-end, the metadata access path needs changes in
design. Since we heavily depend on metadata stored in
PNFS, a high throughput access to metadata becomes
crucial for very large installations. After some design
evaluations we decided to simulate a filesystem on top of
RDBMS.

Pic. 1

As an option we looked at DMAPI enabled file systems
like IBM™ JFS or SGI™ XFS. As there wer no out of
the box solution, vendor dependencies, lack of big users
community and still required coding, we decided not to
go in this direction.

The basic idea of a new design is a filesystem core on top
of a relational database. A relational database provides the
following benefits:

● Well known (world wide expertise)
● Query language
● Backup and recovery tools
● Consistency checks
● Triggers and stored procedures
● JDBC/ODBC allows to be vendor independent

By providing a separate database table for each type of
metadata (pnfs level), we could isolate levels so that
queries on one type of information don't have any impact

on others. In addition, this schema doesn't store empty
records if a file does not have metadata of this particular
type. Simple SQL queries can be used to get all kinds of
information (for example space used by particular
user/VO which is necessary for the upcoming quota
integration).

Due to talking strict JDBC Chimera is database vendor
independent. The current prototype has been tested
against Oracle, PostgreSQL and MySQL RDBMS.
External configuration files allow to define DB
implementation specific SQL dialects to improve
performance.

A well defined API provides three sets of operations –
namespace operations, metadata manipulations and admin
interface. The dCache system accesses the filesystem
directly via the API, bypassing the NFS interface. By
using the Chimera implementation of the Java File class
it's easy to add a customized frontend. Nevertheless an
NFS interface is required to support legacy clients. In
addition, the NFS interface has to simulate at least a
subset of the pnfs magic commands. Internal transaction
isolation allows to run many frontends (NFS, dCache and
so on) against a single database (filesystem) in parallel.

Nowadays the UNIX permissions are insufficient for
many applications. While most HEP applications are
UNIX-based, we have seen a growing demand of GRID-
based access, where user DN(Distinct Name) replaces the
uid. Pluggable permission handlers allow to add a site
specific security policy implementation. If nothing is
defined, the UNIX standard permission handling is built
in.

In preparation of the new namespace service dCache
module, which interacts with pnfs, the PnfsManager had
to be changed. The monolithic concept was replaced by a
modular architecture - core controller with three
functional modules for namespace, storage and location
operations. Each module is an external unit. One module
may provide functionality of other modules as well.
Chimera provides namespace and storage operations. File
locations in pools, e.g. cacheinfo, is provided by the
dCache instance itself, know as 'Companion', because it's
related to a particular instance.

Like a regular UNIX file system, which allows to mount
new hard disk to a directory, Chimera allows to set a
directory as reference to another instance. This doesn't
only improve scalability, but provides a hierarchical
structure as well, where each braunch can be the root of a
different 'view'. E.g.: H1, Zeus and the LHC experiments
may have their own instances, although they are still part
of a single rooted file system, representing the whole
DESY storage system.

N
A
M
E
S
P
A
C
E

NFS
v3Pnfs

simulation

Osm,
enstore

DB

F
S

C
O
R
E

In(Ex)ternal
ACL module

M
E
T
A

NFS
v4

Web
Interfac

e

dCache

HSM,
Logging Fs Events callback

A
D
M
I
N

Chimera
core

Pic. 2

The event handling system provides callback
functionality to external applications. This allows
performing actions on file system events (for instance:
remove file from HSM on removal from namespace).

The test instance at DESY easily handles 1.5 million files
with a 200 files per second create rate. In combination
with dCache components we are running a prototype for
evaluation. The pnfs simulation allows to use existing
clients, like dccp and osmcp, without any code changes.
Nevertheless further stress test are required.

To enable a smooth migration of existing pnfs
installations we are going to provide a set of tools, which
will be available with the first official release.

We are still in discussions with other mass storage system
experts to make the HSM interface and the storage
information as generic as possible.

CONCLUSIONS AND OUTLOOK
During one decade of deployment PNFS, has

proven to be stable, robust and flexible. To keep that high
standard also in the future we need to provide some
modifications and additions. The working prototype with
the corresponding dCache components is available and
under performance, scalability and stability tests. A full
functional release for beta-testers is expected in June
2006. The official release is expected in the first quarter
of 2007. Chimera has been designed and optimized for
dCache interactions. Nevertheless the service is
independent of the dCache software and may be used as
filesystem namespace provider for other applications as
well. As soon as Chimera moves from the development to
production phase we are aiming to make it available to the
community (LGPL License).

REFERENCES
[1] http://www-pnfs.desy.de/
[2] http://hppc.fnal.gov/enstore/index.html
[3] http://www.dcache.org
[4] http://www.ietf.org/rfc/rfc1094.txt
[5] http://www.ietf.org/rfc/rfc1813.txt

DB

F
S

DB

F
S

DB

F
S

http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc1813.txt
http://www.dcache.org/
http://hppc.fnal.gov/enstore/index.html
http://www-pnfs.desy.de/

