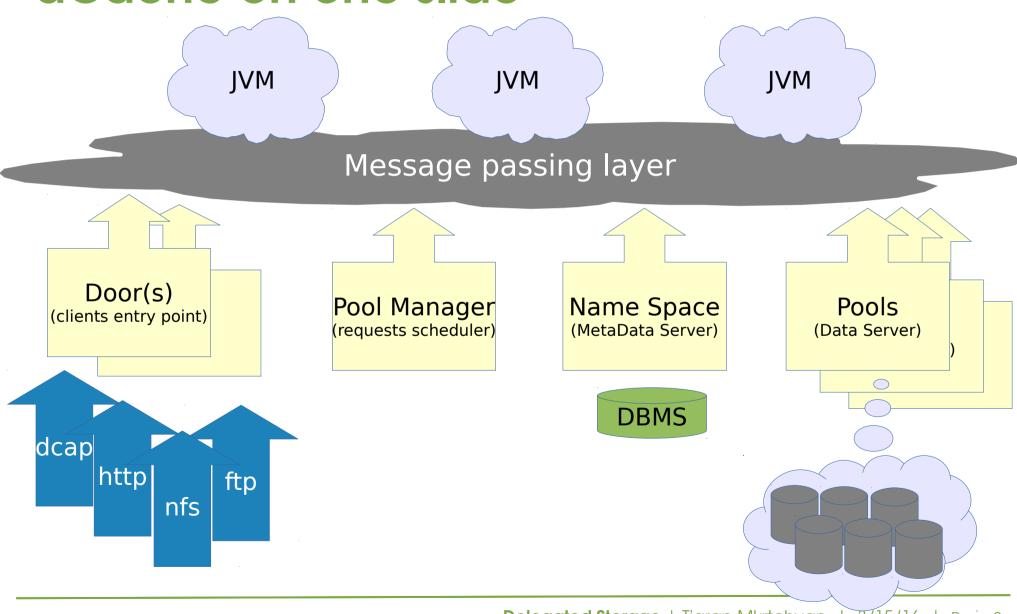


dCache - delegated storage solutions

Tigran Mkrtchyan for dCache Team ISGC 2016, Taiwan



dCache on one slide

Usage around the World

- ~ 80 installations
- > 50% of WLCG storage
- biggest 22 PB
- Typical ~100x nodes
- Typical ~ 10^7 files

dCache as Storage System

- Provides a single-rooted namespace.
- Metadata (namespace) and data locations are independent.
- Aggregates multipe storage nodes into a single storage system.
- Manages data movement, replication, integrity.
- Provides data migration between multiple tiers of storage (DISK, SSD, TAPE).
- Uniquely handles different Authentication mechanisms, like x509, Kerberos, login+password, auth tokens.
- Provides access to the data via variety of access protocols (WebDAV, NFSv4.1/pNFS, xxxFTP. DCAP, Xrootd, DCAP).

dCache as Storage System

- Provides a single-rooted namespace.
- Metadata (namespace) and data locations are independent.
- Aggregates multipe storage nodes into a single storage system.
- Manages data movement, replication, integrity.
- Provides data migration between multiple tiers of storage (DISK, SSD, TAPE).
- Uniquely handles different Authentication mechanisms, like x509, Kerberos, login+password, auth tokens.
- Provides access to the data via variety of access protocols (WebDAV, NFSv4.1/pNFS, xxxFTP. DCAP, Xrootd, DCAP).

dCache's data management

- Automatic migration
 - Tape/disk/disk
 - HotSpot detection
 - Permanent migration jobs
 - Checksumming on transfer
- Manual migration
- Data replication
 - multiple copies
 - same host/rack/site policy

Software-defined storage (or did you listen Patrick carefully?)

- Abstraction of logical storage services and capabilities from the underlying physical storage systems
- Automation with policy-driven storage provisioning with service-level agreements replacing technology details.
- Commodity hardware with storage logic abstracted into a software layer.

Storage in dCache (what we have)

- dCache provides high level service
- Data replication and management core dCache service
- Each pool attached to own disks

dCache services (Namespace, PoolSelection, Doors, Authn/Authz)						
Replication/Migration						
Pool service	Pool service	Pool service	Pool service	Pool service		
Block device	Block device	Block device	Block device	Block device		

Storage in dCache (outsourcing, phase 1)

- dCache provides high level service
- Data replication and management core dCache service
- Each pool has it own 'partition' on shared storage
- Each 'partition' attached to it's own block device

dCache services (Namespace, PoolSelection, Doors, Authn/Authz)						
Replication/Migration						
Pool service	Pool service	Pool service	Pool service	Pool service		
@ ceph	@ ceph	@ ceph	@ ceph	@ ceph		

Phase 1 (changing IO layer)

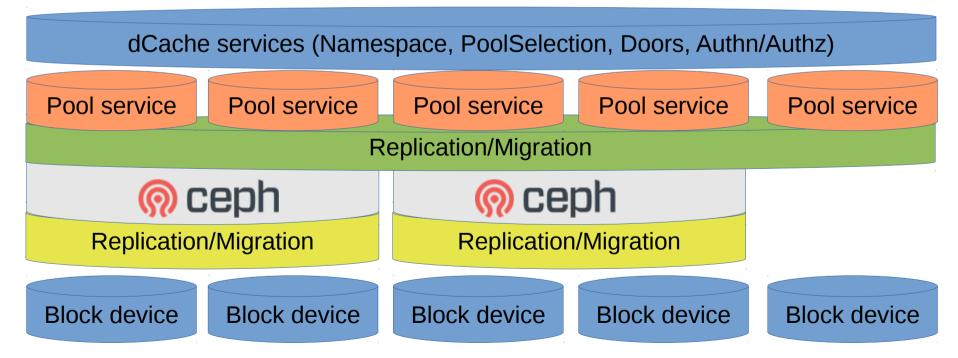
- Single data server owns the data
- Single data server manages data
 - flush to tape
 - restore from tape
 - removal
 - garbage collection

Storage in dCache (outsourcing, phase 2)

- dCache provides high level service
- All pool see all 'partition' on shared storage
- Any pool can deliver data from any partition
- Object store takes care about replication

dCache services (Namespace, PoolSelection, Doors, Authn/Authz)							
Pool service	Pool service	Pool service	Pool service	Pool service			
© ceph							
Replication/Migration							
Block device	Block device	Block device	Block device	Block device			

Phase 2 (Changing core philosophy)


- All data managed by 'quorum'
 - group decision who interact with tape
 - group decision who/when file is removed
 - File location is always 'known'

Storage in dCache (outsourcing, phase 3)

- dCache provides high level service
- dCache can move data between regular and OS pools

Phase 3 (mixed environment)

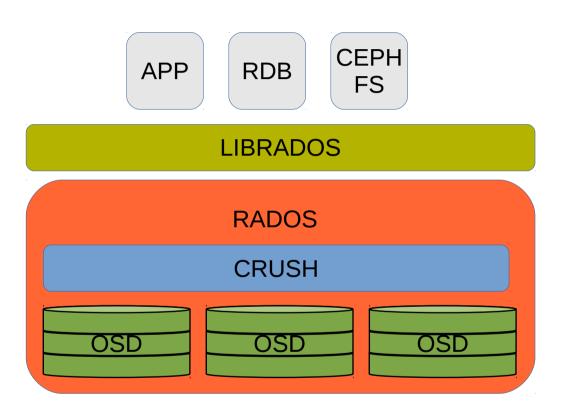
- Mixed setup
- Islands of storage servers
- Replication and data movement between islands

Why CEPH

- No specific hardware support
- Runs on commodity hardware

- Scalable to exabytes of data
- Deployed at sites as storage system for OpenStack
- Provides Object, Block and File interfaces

And not only CEPH


- Other object store can be adopted
 - DDN WOS
- Swift/S3/CDMI
- Cluster file systems (as a side effect)
 - Luster
 - GPFS
 - GlusterFS

CEPH (extremely simplified)

- OSD ~ a physical disk
- CRUSH determines how to store and retrieve data by computing data storage locations.
- RADOS distributes objects across the storage cluster and replicates objects
- librados provides low-level access to the RADOS service.

Current work

- Functional prototype only
- Focus on stability first
- RBD based
 - striping
 - alterable content
- Object interface will be evaluated as well

Roadmap

- Phase 1
 - running prototype is available today
 - some sites volunteer to help with testing
 - cleaning up to make generally available
- Phase 2/3
 - depends on user demand
 - operational overhead, if any
 - support overhead, if any

Summary

- dCache is demanded storage system.
- New technology provides required building blocks.
- Combination on both makes us to concentrate on missing parts.
- Working prototype available for testing.

Links

- https://www.dcache.org/
- https://en.wikipedia.org/wiki/Software-def ined_storage
- http://ceph.com/