
High availability and
analysis of PostgreSQL

Sergey Kalinin

18-19 of April 2012,
dCache Workshop, Zeuthen

Tuesday, April 17, 12

Content

• There is a lot you can do with PG. This talk
concentrates on backup, high availability and
how to analyze the usage of your DBs.

• Mainly software part will be discussed. The
analysis can also tell you how to improve your
setups in terms of hardware.

• There is no hands-on session but there will be
some commands and examples of settings.

Tuesday, April 17, 12

Backup
• Most of the people to my knowledge use

pg_dumpall to backup dCache metadata. 3
reasons why it is not optimal:

• pg_dumpall is slow and pg_restore
parallelism cannot be used

• the data produced by pg_dumpall is not
consistent because it usually takes long time
to generate the SQL script. E.g. chimeraDB
vs SRM/billingDB.

• physical backup is often better: it is faster
and more up-to-date

Tuesday, April 17, 12

High availability

Availability: degree to which a system
is up and running

Requirements to high availability:

• Minimize failures
• Keep downtime as short as possible
• Don’t loose more data than you absolutely have to

Crashes, services upgrades, migrations, other errors...

Tuesday, April 17, 12

Redundant vs shared

Client

Master
Server

Slave
Server Server

Client ClientClientClient

Redundant Shared

Single point of failureSlave
Server

SQL

Tuesday, April 17, 12

PostgreSQL databases
replication

Physical replication:
• Transparent
• Network bandwidth and
HDD read/writes are the
time determining factors
• The two systems should be
identical in terms of OS,
binaries, PostgreSQL
• One command for
everything

Logical replication(SQL,
Slony):
• Flexible and scalable
• Lower network transfers
• Allows schema differences

WAL streaming:
• Is very much like Logical
but requires the same
system/PG binaries

Tuesday, April 17, 12

Replication. Best
practices

• Use similar hardware and OS on all systems

• Configure systems identically

• Keep the clocks synchronized

• Monitor the servers and the replication delay
between servers as it defines how much data you
can loose in async replication if something goes
wrong

• Use the same PostgreSQL versions. Literally, the
same binaries.

Tuesday, April 17, 12

Streaming log replication

Master
WAL

sender
WAL

Receiver Slave

Archiving

WAL is transaction log(==changes)

Replay SQL
statements

Tuesday, April 17, 12

Setting up streaming
replication 1

1. Define master and slave nodes

2. Make replication secure:

postgres=#create user repuser superuser login connection limit 1 encrypted password ‘changeme’;

3. Authenticate the slave: in master’s pg_hba.conf

host replication user repuser 127.0.0.1/0 md5

4. Setup logging for replication and associated failures in postgresql.conf:

log_connections = on

5. Configure WALSender on the master, postfgresql.conf
max_wal_senders =1

wal_mode=‘archive’

archive_mode = on

archive_command=’cd .’

Tuesday, April 17, 12

Setting up streaming
replication 2

1. Setup playback history size in postgresql.conf . E.g. 16 GB and it should not be
more space than you have:

2. $psql -c "select pg_start_backup('base backup for streamingrep')"

3. $rsync -cva --inplace --exclude=*pg_xlog* ${PGDATA}/ $STANDBYNODE:$PGDATA

4. $psql -c "select pg_stop_backup(), current_timestamp"

5. Configure standby(slave) in recovery.conf . If PG sees this file, it is automatically
recognizes the standby mode.

Standby_mode = 'on'
primary_conninfo = 'host=192.168.0.1 user=repuser'
trigger_file = '/tmp/postgresql.trigger.5432'

wal_keep_segments=10000

Tuesday, April 17, 12

Monitoring streaming
replication

CREATE OR REPLACE VIEW pg_stat_replication AS
 SELECT
 S.procpid,
 S.usesysid,
 U.rolname AS usename,
 S.application_name,
 S.client_addr,
 S.client_port,
 S.backend_start
 FROM pg_stat_get_activity(NULL) AS S, pg_authid U
 WHERE S.usesysid = U.oid AND S.datid = 0;

WALSender does not show up in pg_stat_activity but the
following function will tell you most of the stats

Tuesday, April 17, 12

Backup and High
Availability

• PostgreSQL offers you a number of
possibilities on how to make a backup but you
may combine it with High Availability

• Streaming replication has many
advantages(easy to setup, flexible, etc) but one
has to be careful and monitor PG activities

• There are also other third parties solutions:
Slony 2.0, Londiste, pgpool-II 3.0

Tuesday, April 17, 12

Part 2. PostgreSQL
Performance

• If you see a significant load on your dCache PostgreSQL
databases, most probably, you have problems with
indexes. Plot for Wuppertal head node, 3.5 millions of
PNFSIDs, all dCache services except pools. 40 GB DB.

Tuesday, April 17, 12

PG Performance. Finding
slow queries

• How to find out slow queries? postgresql.conf:

LOG: duration: 206.843 ms execute S_8: SELECT
ipnfsid,isize,inlink,itype,imode,iuid,igid,iatime,ictime,imtime from path2inodes($1, $2)

one can try

1. $psql -c "explain analyze SELECT ipnfsid,isize ...

log_min_duration_statement=100 #100 ms

$tail /pgsql/9.0/data/pg_log/postgresql-2012-04-12_000000.log

There are also other benchmarking tools(e.g. pg_bench or you
can recompile PG with profiling information), but most of the

problems are related to queries rather than to PG itself
Tuesday, April 17, 12

Indexing
• You can create your own indices but dCache provides by default a number of

them /usr/share/dcache/chimera/sql/create.sql:

• CREATE INDEX i_dirs_iparent ON t_dirs(iparent);

• CREATE INDEX i_dirs_ipnfsid ON t_dirs(ipnfsid);

How to find which indices are used?

Tuesday, April 17, 12

Statistics collector

• The statistics collector reports many things.
You can learn everything about how dCache
works with your DB [1].For example, user
functions calls:

Tuesday, April 17, 12

http://www.postgresql.org/docs/9.0/static/monitoring-stats.html
http://www.postgresql.org/docs/9.0/static/monitoring-stats.html

Usage of tables for
Wuppertal

Tuesday, April 17, 12

Index bloating
Old data may accumulate over time if maintenance fails due to some reason.
This is called bloating which is also the case for indices. How to check your
tables?

That one looks
suspicious!

Ideally, index size is
proportional
to the table size

Tuesday, April 17, 12

Reindexing

• If you suspect that some of your indices are
bloated due to MVCC(Multi-Version
Concurrency Control) then you can simply re-
index all the databases with

1. $reindex -a

• Also note here that autovacuum does not fix
bloating. This is a relatively fast(~hours)
procedure but speeds up sql queries

Tuesday, April 17, 12

A bit on memory
management

• Many persons have a ‘natural’ intention to pin
certain things in memory: tables, indexes, etc. It
may sounds reasonable from the first look but
in 99% it is less smarter than LRU caching. For
example, if you read an index, you also read
information from the table.

• All the databases and tables share the same
caching memory. Note, the default PG settings
ARE NOT OPTIMIZED. They are just enough
to start the server.

Tuesday, April 17, 12

Cache buffers(RAM)
usage for Wuppertal

Everything is mixed up: tables, indexes, keys...

Tuesday, April 17, 12

SSDs

• Most of the time we read data from dCache which is
also true for actual data from data servers. And we
read data randomly(e.g. previous slide).

• Typical size of dCache tables and indexes fits very well
to those provided by currently available SSDs.

• It is worth considering as they get cheaper and
cheaper. Not fast enough though...

Tuesday, April 17, 12

References

1. http://www.postgresql.org/docs/9.0/static/monitoring-stats.html

2. http://pgfouine.projects.postgresql.org/ PG logs analyzer

3. http://www.kennygorman.com/wordpress/?p=250 Python script showing
PostgreSQL objects in Linux memory.

4. http://www.postgresql.org/docs/current/static/pgbench.html

5. “PostGRESQL 9.0 High Performance”, Gregory Smith, ISBN
978-1-849510-30-1

6. “PostGRESQL 9.0 Administration Cookbook”, Simon Riggs, Hannu
Krosing, ISBN 978-1-849510-28-8

Tuesday, April 17, 12

http://www.postgresql.org/docs/9.0/static/monitoring-stats.html
http://www.postgresql.org/docs/9.0/static/monitoring-stats.html
http://pgfouine.projects.postgresql.org
http://pgfouine.projects.postgresql.org
http://www.kennygorman.com/wordpress/?p=250
http://www.kennygorman.com/wordpress/?p=250
http://www.postgresql.org/docs/current/
http://www.postgresql.org/docs/current/

Linux sys tools

• IO: iostat

• Process util: mpstat, pidstat

• System activities: sar

• HDD benchmarking: bonnie++

•

Tuesday, April 17, 12

