3" dCache Workshop
owe- 11 Rheinisch-Westfalische Technische Hochschule Aachen
|_|V|U S nenen AT | Aachen April 8, 2009

Access Control within dCache

gPlazma and ACLs

Christoph Anton Mitterer

christoph.anton.mitterer@Imu.de

[D)evsa

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Contents

l. Introduction
1. General Concepts and Motivation
2. Access Control Systems in dCache
Il. gPlazma — Overview and Configuration
1. General
2. Plug-ins
lll. Access Control Subprocesses
Not yet finished, will be made available later.
IV. Access Control Lists
1. Overview and Motivation
2. Access Control Lists in dCache
3. Configuration
4. Structure, Syntax and Semantics
5. Evaluation
6. Editing

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Contents

V. Examples and Exercises
1. Access Control Lists

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

l. Introduction

LUDWIG-

UNIVERS AT gPlazma and ACLs

waximiLians- || Access Control within dCache
LMU

General Concepts

» Entities and Resources
Entities (for example persons, groups or
processes) are making access requests,
using one of their identities, in order to get
access to resources (for example files,
services provided Dby hardware or
functionality provided by software).

= /dentities
An identity is a set of attributes describing
its owner (an entity).
|dentities are created by identity-providers,
which validate and certify the correctness
of the attributes.

= Policies
Policies contain the rules that describe how
resources might be accessed.

Christoph Anton Mitterer

Access Control

Request

Policies

Resources

\ /

Identification

Authentication

Authorisation-
Process

Enforcing the
Decision

Slide 5

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

General Concepts

Access Control

= Access-Request
A client’s request to access resources.
= [dentification
The act of presenting an identity.
= Authentication
The process of verifying the integrity and
authenticity of an identity, using the
credentials provided by the identity-
provider.
= Authorisation-Process
The process of finding a decision to the
access-request, using the data from the
identity, the policies and the access-request | g 4_»'4_» ‘
itself. Reses :
= Enforcing the Decision 5 Fnloreing the .
Granting or denying the access.

Identification

Authentication

Authorisation-
Process

Policies

Christoph Anton Mitterer Slide 6

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Motivation

General reasons for access control are:

= Integrity

= Confidentiality

= Availability

... of the protected resources, which are primarily files in the case of storage
systems.

From the perspective of LCG Storage Elements this looks like the following:

= Confidentiality is less important, as most data is public anyway.

= Availability is mainly reached by redundancy and automatic replication services,
but not via means of access control.

= Integrity is definitely the most important aim of access control, as different
classes of data must be secured from being modified or even deleted accidentally.

A typical example is, that normal users should not be able to write in
“production-storage-areas”.

Christoph Anton Mitterer Slide 7

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Access Control Systems in dCache

dCache contains several access control systems, used with different types of

protocols and providing a varying set of features:

= dcache.kpwd (dcap, GridFTP, SRM)
This is a legacy system that was used before the implementation of gPlazma and
is still used by dcap-door-cells. It should not be confused with gPlazma’s “kpwd”-
plug-in.
Using this system with GridFTP- or SRM-door-cells is still possible ', but strongly
discouraged.

= Xxrootd-ALICE (xrootd)

This system implements the so called “ALICE security model” and is only used by
xrootd-door-cells.

= gPlazma + door-cell (GSldcap, GridFTP, SRM)
The GSldcap-, GridFTP- and SRM-door-cells implement their own (very similar)
access control systems by using the services provided by gPlazma.

This presentation focuses on gPlazma.

Christoph Anton Mitterer Slide 8

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

ll. gPlazma - Overview and Configuration

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

General Information

gPlazma (Grid-Aware Pluggable Authorization Management) is a part of dCache,
providing services for access control, which are used by door-cells in order to
implement their access control system.

It should be noted, that usually not every type of door-cell makes use of all the
features provided by gPlazma.

gPlazma was introduced with dCache version 1.7 and is currently used by
GSldcap-, GridFTP- and SRM-door-cells (gPlazma-support for xrootd-door-cells is
planned).

In order to serve different needs, gPlazma utilises plug-ins as back-end for its tasks
and services.
Currently, the following plug-ins are provided:

= kpwd
= grid-mapfile = saml-vo-mapping
= gplazmalite-vorole-mapping = xacml-vo-mapping

Christoph Anton Mitterer Slide 10

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Requirements and Constraints

gPlazma has a number of requirements and constraints:

= Of course, the specific door-cell must support gPlazma, which is currently not the
case with dcap- and xrootd-door-cells.

= There can be only one gPlazma-cell per dCache-cluster.

= gPlazma requires the CA- and VOMS-root-certificates, that it should use, to be
present in /etc/grid-security/certificates/ and /etc/grid-security/
vomsdir respectively.

= [n some cases, gPlazma requires X.509-host-certificates to be present in /etc/
grid-security/.
TODO

= The configuration for gPlazma and its used plug-ins must be present on any host
that either invokes gPlazma as cell or directly as module.

= Multiple DNs per client-certificate are currently generally not supported (but
multiple roles are).

= The gPlazma-cell must be restarted in order to notice changes to its
configuration.

Christoph Anton Mitterer Slide 11

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Enabling the gPlazma-cell and General Configuration

In order to enable the gPlazma-cell for a dCache-cluster the following must be set

In dCache-home/etc/node_config on one node:
gPlazmaService=yes

Remember that there may be not more than one gPlazma-cell per dCache-cluster.

If gPlazma is neither used as cell, nor as module, GridFTP- and SRM-door-cells will
fall back to the legacy access control system, “dcache.kpwd” (whose configuration
must then be present on any host that makes use of it).

General configuration-parameters in dCache-home/config/gPlazmaSetup are:
= gplazmaPolicy
Specifies the pathname of the “gPlazma-policy-configuration-file”.
= gPlazmaNumberOfSimutaneousRequests
Specifies the number of concurrent requests to gPlazma.
= gPlazmaRequestTimeout
Specifies the number of seconds, in which a request must be answered by
gPlazma before being denied.

2

Christoph Anton Mitterer Slide 12

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Invoking gPlazma as Cell or as Module

There are two ways, how a door-cell can invoke gPlazma:

= as cell
The door-cell communicates with the gPlazma-cell, which can be on any node of
the dCache-cluster, using “dCache-cell-messaging”.

= as module
The door-cell invokes the gPlazma-code locally.

Note that in order for this being possible, all necessary configuration must be
present on the nodes where gPlazma is invoked as module.

Additionally, some of the general configuration-options might not work, when
gPlazma is invoked as module.

Christoph Anton Mitterer Slide 13

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Invoking gPlazma as Cell or as Module

For door-cells, supporting both invocation-ways of gPlazma, this can be configured
on a per node-basis via the following parameters in the configuration-file of the
respective door-cell:
=" yseGPlazmaAuthorizationCell

Set to true if gPlazma should be invoked as cell, or to false otherwise.
= yseGPlazmaAuthorizationModule

Set to true if gPlazma should be invoked as module, or to false otherwise.

If both are setto true, the cell is queried first and if this fails (in case of errors)
gPlazma is invoked as module. If both are setto false, gPlazma will not be used
and dCache falls back to its legacy access control system.

Note that configuration- and policy-data might differ between the “cell-node” and
the “module-nodes”, which may lead to conflicts.

Currently, this is supported by GSldcap-, GridFTP-, and SRM-door-cells.

Christoph Anton Mitterer Slide 14

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Selecting Plug-ins and specifying their Priorities

gPlazma’s plug-ins are mainly configured via the “gPlazma-policy-configuration-
file” (per default found at dcache-home/config/dcachesrm-gplazma.policy).

Plug-ins are enabled or disabled via the following configuration-parameters:

= kpwd, grid-mapfile, gplazmalite-vorole-mapping, saml-vo-mapping and
xacml-vo-mapping
Set to oN if the specific plug-in should be enabled, or OFF otherwise.

The order in which gPlazma tries the plug-ins until any mappings are found can be

set via the following configuration-parameters:

=" kpwd-priority, grid-mapfile-priority, gplazmalite-vorole-mapping-
priority, saml-vo-mapping-priority and xacml-vo-mapping-priority
Set to natural numbers starting with 1, where a smaller number means a higher
priority.

Christoph Anton Mitterer Slide 15

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“kpwd”-Plug-in

This plug-in allows the usage of “dcache.kpwd-style”-files, as known from dCache’s
legacy access control system, within gPlazma.

It should be noted, that this plug-in does not support some modern features, for
example VO-attributes attached to certificates or secondary groups.

The plug-in is configured via the following parameters in the “gPlazma-policy-
configuration-file”:
= kpwdPath

Specifies the pathname of the “dcache.kpwd-style”-file to be used by the plug-in.

This must not be confused with the kpwdFile configuration-parameter that is
used® by dCache’s legacy access control system.

The syntax and semantics of “dcache.kpwd-style”-files are explained in dCache-
home/etc/dcache.kpwd. template.

Christoph Anton Mitterer Slide 16

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“grid-mapfile”-Plug-in

This plug-in allows the usage of “grid-mapfile-style”-files, as known from the
Globus Toolkit, within gPlazma.

It should be noted, that this plug-in does not support some modern features, for
example VO-attributes attached to certificates.

The plug-in is configured via the following parameters in the “gPlazma-policy-
configuration-file”:
= gridMapFilePath
Specifies the pathname of the “grid-mapfile-style”-file to be used by the plug-in.
= storageAuthzPath
Specifies the pathname of the “storage-authzdb-style”-file to be used by the plug-
in.

Christoph Anton Mitterer Slide 17

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT

MUNCHEN

Access Control within dCache
gPlazma and ACLs

“grid-mapfile”-Plug-in

The following two-stage mapping-mechanism is applied by the plug-in:

1. Using the “grid-mapfile-style”-file, the client-certificate’s DN is mapped to a
virtual user-name, which is not to be confused with an actual UNIX user-name.

2. Using the “storage-authzdb-style’-file, this virtual user-name is then mapped to
the actual UNIX user-ID * and group-IDs* (as they are also used by dCache’s file-
hierarchy-provider, which is either Chimera or the legacy PNFS) as well as some
other information.

client-
certificate

“grid-mapfile-style”- “storage-authzdb-style”-
file file

DN

possible
mappings

virtual
user-name

Christoph Anton Mitterer

Slide 18

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

“grid-mapfile-Style”-File Syntax and Semantics

Each line specifies a mapping from a client-certificate’s DN to exactly one ° virtual

user-name via the following syntax:
"distinguished_name" virtual_user-name

11 1 7

distinguished_name must always be quoted using :
Lines not starting with “ "” are currently ignored by dCache.

If the same DN occurs in multiple lines then only the mapping from the last one is
used.

Examples:
= '"/C=DE/0O=GermanGrid/OU=LMU/CN=Christoph Anton Mitterer" atlas

= '""/C=DE/0O=GridGermany/0OU=Leibniz-Rechenzentrum/
CN=Christoph Anton Mitterer" dgrid

Christoph Anton Mitterer Slide 19

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

“grid-mapfile-Style”-File Syntax and Semantics

More information about the syntax and semantics of “grid-mapfile-style’-files can
be found in the documentation to the Globus Toolkit.

In addition, the Globus Toolkit provides the grid-mapfile-add-entry, grid-

mapfile-delete-entry and grid-mapfile-check-consistency programs to
maintain “grid-mapfile-style”-files.

Christoph Anton Mitterer Slide 20

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“gplazmalite-vorole-mapping”’-Plug-in

This plug-in allows the usage of “grid-vorolemap-style”-files, which are similar to
the “grid-mapfile-style”-files but provide support for virtual organisations and their
attributes ®, like Role and Capability.

The plug-in is configured via the following parameters in the “gPlazma-policy-
configuration-file”:
= gridVoRolemapPath
Specifies the pathname of the “grid-vorolemap-style”-file to be used by the plug-
in.
= gridVoRoleStorageAuthzPath
Specifies the pathname of the “storage-authzdb-style”-file to be used by the plug-
in.

Christoph Anton Mitterer Slide 21

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

“gplazmalite-vorole-mapping”’-Plug-in

The following two-stage mapping-mechanism is applied by the plug-in:

1. Using the “grid-vorolemap-style”-file, the client-certificate’s DN and FQANSs are
mapped to some virtual user-names, which are not to be confused with actual
UNIX user-names.

2. Using the “storage-authzdb-style”-file, these virtual user-names are then
mapped to the actual UNIX user-ID(s) * and group-IDs* (as they are also used by
dCache’s file-hierarchy-provider, which is either Chimera or the legacy PNFS) as
well as some other information.

client- “grid-vorolemap-style”- “storage-authzdb-style”- possible
certificate file mappings
r— =
virtual
user-names

Christoph Anton Mitterer Slide 22

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“grid-vorolemap-Style”-File Syntax and Semantics

Each line specifies a mapping from a client-certificate’s DN and FQAN to exactly
one virtual user-name via the following syntax:
"distinguished_name" ["fqgan"| virtual_user-name

distinguished_name and fgan must always be quoted using “ "”".

Lines not starting with “ "” are currently ignored by dCache.

If the same DN occurs in multiple lines with the same FQAN then only the mapping
from the last one is used. However, the same DN can be used multiple times with
different FQANs and thus map to different virtual user-names.

If fgan is empty or "fgan" not specified at all, only client-certificates with an empty
or no FQAN will match.

Examples:

= '""/C=DE/0O=GermanGrid/0OU=LMU/CN=Christoph Anton Mitterer" "/atlas"
atlas001

= "/C=DE/0O=GermanGrid/0OU=LMU/CN=Christoph Anton Mitterer"
"/atlas/Role=production" prdatlol

Christoph Anton Mitterer Slide 23

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“grid-vorolemap-Style”-File Syntax and Semantics

distinguished_name can also be setto” *”, which serves as a regular expression
matching any character sequence (“wildcard character”).
This is especially useful when mapping whole VOs.

Examples:
m it M/atlas" atlas001
m"*" "/atlas/Role=production" prdatlel

It is important to note, that when any mapping is found via an “explicit-DN-match”,
all mappings that would arise from a “wildcard-match” are ignored. This applies for
“disabling entries”, too.

“Disabling entries” (also called “revocation entries”) can made by using “ -7 as
virtual user-name.

This is a valid mapping and thus no “further” plug-ins will be tried. It should be

noted however, that “previous” plug-ins are still tried. (See priority of plug-ins.)

Christoph Anton Mitterer Slide 24

LUDWIG-

waximiLians- || Access Control within dCache
LMU

monenen T gPlazma and ACLs

“grid-vorolemap-Style”’-File — Example Mappings

= “single wildcard-match”
Certificate-DN: /C=DE/0=GermanGrid/0U=LMU/CN=Christoph Anton Mitterer
Certificate-FQANSs: /atlas

“grid-vorolemap-style”-file-contents:
nxiM/atlas" atlaseo1
"x1no/atlas/de" atlas002

Resulting mappings: atlas001

= “multiple wildcard-matches”
Certificate-DN: /C=DE/0=GermanGrid/0OU=LMU/CN=Christoph Anton Mitterer
Certificate-FQANs: /atlas, /atlas/de, /atlas/Role=production

“grid-vorolemap-style”-file-contents:

et /atlas" atlas00l

=i /atlas/de" atlas002

"o /atlas/Role=production" prdatlol

Resulting mappings: atlas001, at1las002, prdatleil

Christoph Anton Mitterer Slide 25

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

ugrid_vorolemap-Style”-FiIe — Example Mappings

= “overriding explicit-DN-match”
Certificate-DN: /C=DE/0=GermanGrid/0OU=LMU/CN=Christoph Anton Mitterer
Certificate-FQANs: /atlas

“grid-vorolemap-style”-file-contents:
(the order of these lines does not matter)

=i /atlas" atlas00l
"/C=DE/0O=GermanGrid/0U=LMU/CN=Christoph Anton Mitterer" "/atlas" ops
Resulting mappings: ops

= “disabling entry”
Certificate-DN: /C=DE/0=GermanGrid/0OU=LMU/CN=Christoph Anton Mitterer
Certificate-FQANSs: /atlas, /atlas/de, /atlas/Role=production

“grid-vorolemap-style”-file-contents:
(the order of these lines does not matter)

=i /atlas" atlaso00l
"/C=DE/0O=GermanGrid/0OU=LMU/CN=Christoph Anton Mitterer" "/atlas" -
Resulting mappings: - (special “disabling” mapping)

Christoph Anton Mitterer Slide 26

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“saml-vo-mapping”’-Plug-in

This plug-in allows the usage of the Security Assertion Markup Language (SAML)
within gPlazma, which is typically done, when a GUMS-server (
Grid User Management System) should be used for providing mapping-services.

The plug-in is configured via the following parameters in the “gPlazma-policy-
configuration-file”:
= mappingServiceUrl
Specifies the URL of the mapping-service (typically the GUMS-server).
= saml-vo-mapping-cache-lifetime
Specifies the caching lifetime of queried mappings in seconds. If setto © caching
Is disabled.
= gridVoRoleStorageAuthzPath®
Specifies the pathname of the “storage-authzdb-style”-file to be used by the plug-
in, which is only required when using the so called “GUMSAuthorization-
ServicePort”, but not when using the “StorageAuthorizationServicePort”.

Christoph Anton Mitterer Slide 27

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“saml-vo-mapping”’-Plug-in

The following describes the basic procedure of using a GUMS-server:

1. If the mapping-result is not cached, the plug-in contacts the GUMS-server in a
secure way (thus X.509 host-certificates an CA-root-certificates are required) °,
providing it with the whole certificate chain of the specific access-request.

2. The GUMS-server does the necessary work to determine the desired mapping
and returns the result to the plug-in:

a. If the “GUMSAuthorizationServicePort” was used, virtual user-names will be
returned, which have to be resolved by the plug-in using its “storage-authzdb-
style”-file.

b. If the “StorageAuthorizationServicePort” was used, the actual UNIX user-ID
and group-IDs (as they are also used by dCache’s file-hierarchy-provider,
which is either Chimeraor the legacy PNFS) as well as some other
information will be returned.

One big advantage of using a GUMS-server is, that it can centralise and take over
many tasks, like querying the VOMS-servers.

Christoph Anton Mitterer Slide 28

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

“xacml-vo-mapping”’-Plug-in

This plug-in allows the usage of the eXtensible Access Control Markup Language
(XACML) within gPlazma'®, which is typically done, when a GUMS- (
Grid User Management System) or SCAS-server (Site Central Authorization
Service) should be used for providing mapping-services.

The plug-in is configured via the following parameters in the “gPlazma-policy-
configuration-file”:
= XACMLmappingServiceUrl
Specifies the URL of the mapping-service (typically the GUMS- or SCAS-server).
= xacml-vo-mapping-cache-lifetime
Specifies the caching lifetime of queried mappings in seconds. If setto © caching
Is disabled.
= gridvVoRoleStorageAuthzPath®
Specifies the pathname of the “storage-authzdb-style”-file to be used by the plug-
in, which is only required when using the so called “GUMSAuthorization-
ServicePort”, but not when using the “StorageAuthorizationServicePort”.

Christoph Anton Mitterer Slide 29

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

“xacml-vo-mapping”’-Plug-in

The basic procedure of using a GUMS- or SCAS-server is the same as described
above on slide 19.

For the SCAS-server there is however one important difference:

An SCAS-server returns a user-1D, a group-ID and zero or more secondary-group-
IDs.

gPlazma concatenates the user-ID and group-ID separated by a “ :” and the actual

mappings are determined by taking this as virtual user-name in the plug-ins’
“storage-authzdb-style”-file.

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Mapping with “storage-authzdb-Style”-Files

“storage-authzdb-style-files are used by several plug-ins for mapping virtual user-
names to the actual UNIX user-ID(s) * and group-IDs * (as they are also used by
dCache’s file-hierarchy-provider, which is either Chimera or the legacy PNFS) as
well as some other information.

There are two ways of mapping that can be used in a “storage-authzdb-style-file:
= static mapping-method
With this method the “storage-authzdb-style’-file directly specifies the data to
which a virtual user-name is mapped.
= dynamic mapping-method
With this method the “storage-authzdb-style’-file specifies the names of built-in
functions, that handle the mapping to a user-ID * and to group-IDs* respectively.
The other information is still directly mapped via the “storage-authzdb-style"-file.

Currently this is used by the grid-mapfile-, gplazmalite-vorole-mapping- and in
some cases by the saml-vo-mapping- and xacml-vo-mapping-plug-ins.

Christoph Anton Mitterer Slide 31

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“storage-authzdb-Style”-File Syntax and Semantics

Each line starts with a keyword and is interpreted according to the currently set
“storage-authzdb-style”-version or its default "".

Keywords are followed by their respective arguments, which are all separated by
white-space.

Lines not starting with a keyword are currently ignored.

The following keywords are recognised:

=yversion
Sets the current “storage-authzdb-style”-version, that will be used when
interpreting entries.
It will be valid until the next occurrence of a version-keyword.

The following versions are currently available:
2.1

The default version.
m2.2

This version adds support for priorities of entries 2.

Christoph Anton Mitterer Slide 32

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

“storage-authzdb-Style”-File Syntax and Semantics

=mauthorize
Introduces a mapping with the static mapping-method, using the following
syntax and semantics:
authorize virtual_user-name access-mode {priority}
group-ID[,group-ID|* home-path root-path fs-root-path

access-mode specifies the allowed access-mode for the respective virtual user-
name and can be either set to read-write or to read-only.

priority specifies the priority of the entry using non-negative integers, where a
higher number means a higher priority. It cannot be set with the 2.1 - but must
be set with the 2.2~ storage-authzdb-style”-version.

13 7

Multiple group-IDs are separated by “, .

version 2.2

user-1ID

Christoph Anton Mitterer Slide 33

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“storage-authzdb-Style”-File Syntax and Semantics

home-path is of legacy use and specified the home-directory for a virtual user-
name. It is always interpreted relatively to root-path.

root-path is of legacy use and specified the root-directory ' for a virtual user-
name. It is always interpreted as an absolute path.

fs-root-path is of legacy use and was needed for Kerberos.

These paths should not be used anymore, especially as they are not necessarily
respected by all door-cells.
However, a value must be specified and it is suggested to set all three to “ /”.

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

“storage-authzdb-Style”-File Syntax and Semantics

= dynamic
Introduces a mapping with the dynamic mapping-method, using the following
syntax and semantics:
dynamic virtual_user-name access-mode {priority}
user-ID-function group-ID-function home-path root-path fs-root-path
access-mode specifies the allowed access-mode for the respective virtual user-
name and can be either set to read-write or to read-only.
priority specifies the priority of the entry using non-negative integers, where a
higher number means a higher priority. It cannot be set with the 2.1 - but must
be set with the 2.2~ storage-authzdb-style”-version.

user-ID-function and group-ID-function are specifying the names of the

built-in functions that return the actual UNIX user-ID(s) '™ and group-ID(s) ™ (as
they are also used by dCache’s file-hierarchy-provider, which is either Chimera or

the legacy PNFS) respectively.

version 2.2

Christoph Anton Mitterer Slide 35

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

“storage-authzdb-Style”-File Syntax and Semantics

home-path is of legacy use and specified the home-directory for a virtual user-
name. It is always interpreted relatively to root-path.

root-path is of legacy use and specified the root-directory ' for a virtual user-
name. It is always interpreted as an absolute path.

fs-root-path is of legacy use and was needed for Kerberos.

These paths should not be used anymore, especially as they are not necessarily
respected by all door-cells.
However, a value must be specified and it is suggested to set all three to “ /”.

Christoph Anton Mitterer Slide 36

waxmiians- [| Access Control within dCache
I_Mu NV ERS AT gPlazma and ACLs

MUNCHEN

“storage-authzdb-Style”-File Syntax and Semantics

Example:
version 2.1

authorize atlas001 read-only 1000 100 / / /
authorize prdatlol read-write 1001 101 / / /

dynamic atlas_map read-write dn_uidmap role_gidmap / / /

Christoph Anton Mitterer Slide 37

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Functions for the Dynamic Mapping-Method

These functions are used to handle the mapping to user-ID(s) ' and group-ID(s) ",
where it depends on the specific function whether multiple values are returned or
not. The virtual user-name is not necessarily used for the actual mapping.

Currently dCache provides the following functions for use with the dynamic

mapping-method:

= dn_uidmap
Maps the DN (that is “currently” evaluated by gPlazma) to an actual UNIX user-
ID (as it is also used by dCache'’s file-hierarchy-provider, which is either Chimera
or the legacy PNFS), using the mappings that were specified in /etc/grid-
security/grid-uidmap.

=" role_gidmap
Maps the FQAN (that is “currently” evaluated by gPlazma) to an actual UNIX
group-ID ' (as it is also used by dCache’s file-hierarchy-provider, which is either
Chimera or the legacy PNFS), using the mappings that were specified in /etc/
grid-security/grid-gidmap.

Christoph Anton Mitterer Slide 38

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“grid-uidmap-Style”-File Syntax and Semantics

Each line specifies a mapping from a client-certificate’s DN to an actual UNIX user-
ID (as it is also used by dCache'’s file-hierarchy-provider, which is either Chimera or

the legacy PNFS) via the following syntax:
"distinguished_name" user-ID

distinguished_name must always be quoted using :
Lines not starting with “ "” are currently ignored by dCache.

If the same DN occurs in multiple lines then only the mapping from the last one is
used.

Examples:
= '""/C=DE/0O=GermanGrid/OU=LMU/CN=Christoph Anton Mitterer" 1000

= '""/C=DE/0O=GridGermany/0OU=Leibniz-Rechenzentrum/
CN=Christoph Anton Mitterer" 1001

Christoph Anton Mitterer Slide 39

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

“grid-gidmap-Style”-File Syntax and Semantics

Each line specifies a mapping from a client-certificate’s FQAN to an ' actual UNIX
group-ID (as it is also used by dCache’s file-hierarchy-provider, which is either
Chimera or the legacy PNFS) via the following syntax:

"fgan" group-ID
fgan must always be quoted using “ "”.
Lines not starting with “ "” are currently ignored by dCache.

If the same FQAN occurs in multiple lines then only the mapping from the last one
is used.

Examples:

='"/atlas" 100

m'"/atlas/de" 110
m'"/atlas/Role=production" 101

Christoph Anton Mitterer Slide 40

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Overview on Using the dn_uidmap- and role_gidmap-Functions

The idea behind the dn_uidmap- and role_gidmap-functions is, that the DN and
FQANSs of an entity making an access-request, should be mapped independently to
one user-ID and zero or more group-IDs respectively.

In other words:

= Each DN corresponds exactly one user-ID.

= Each FQAN (and thus for example each role) corresponds to one group-ID ™.

Christoph Anton Mitterer Slide 41

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT

MUNCHEN

Access Control within dCache
gPlazma and ACLs

Overview on Using the dn_uidmap- and role_gidmap-Functions

The following illustration describes the whole process using the “gplazmalite-
vorole-mapping’-plug-in as example:

client-
certificate

“grid-vorolemap-style”-

file file

FQANSs

file

“storage-authzdb-style”-

possible
mappings

virtual
user-names

‘ /C=DE/0=GermanGrid/0U=LMU
; <—|_
V @

“grid-uidmap-style”- dn_uidmap- role_gidmap-

function

%

function

“grid-gidmap-style”-

file

Christoph Anton Mitterer

Slide 42

LUDWIG-

LMU waximiLians- || Access Control within dCache

monenen T gPlazma and ACLs

Overview on Using the dn_uidmap- and role_gidmap-Functions

Examples for the configuration-files:
= “grid-vorolemap-style”-file:
nxt-/atlas" atlas_map
"=t "/atlas/de" atlas_map
nxi-"/atlas/Role=production" atlas_map
= “storage-authzdb-style’-file:
dynamic atlas_map read-write dn_uidmap role_gidmap / / /
= /etc/grid-security/grid-uidmap:
"/C=DE/0O=GermanGrid/0OU=LMU/CN=Christoph Anton Mitterer" 1000

"/C=DE/0O=GridGermany/0OU=Leibniz-Rechenzentrum/
CN=Christoph Anton Mitterer" 1001
= /etc/grid-security/grid-gidmap:
"/atlas" 100
"/atlas/de" 110
"/atlas/Role=production" 101

Christoph Anton Mitterer Slide 43

LUDWIG-

MAXIMILIANS- Access Control within dCache - ‘fe;’\

UNIVERSITAT Z@R\Wf
MONCHEN gPlazma and ACLs ‘;

lll. Access Control Subprocesses

Not yet finished, will be made available later.

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

IV. Access Control Lists

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Overview on Access Control Lists

Similar to UNIX-like-operating-systems, dCache provided originally only a limited
set of permissions, that could be set on each file (regular files and directories).

This set of permissions corresponds to the traditional POSIX file permission modes:
= read, write and execute permissions for the owning user

= read, write and execute permissions for the owning group

= read, write and execute permissions for others

Eventually, a more powerful system supporting permissions for different users and
groups was demanded by dCache’s users, especially those from the LHC-
community.

Such extended permissions are generally called ACLs (Access Control Lists), which
allow whole lists of so called ACEs (Access Control Entries) to be set on files. Each
ACE specifies a permission for its file.

In dCache, ACLs were introduced starting with version 1.9.3.

Christoph Anton Mitterer Slide 46

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Overview on Access Control Lists

Some well-known ACL-systems include:
= POSIX.1e draft 17 ACLs

= Network File System version 4 ACLs
= \Windows ACLs

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Motivation for Access Control Lists

General reason for ACLs is the need to set more powerful and complex permissions
on files, than the traditional POSIX file permission modes would allow.

From the perspective of LCG Storage Elements this can be demonstrated on the
following scenario:

Within the ATLAS-experiment, data is created and distributed either manually by
users or automatically by some central “production-services”. Each of them can
“clean-up” his own storage-areas, but normal users should usually not be able to
write to “production-storage-areas’.

So far this can be fully achieved with traditional POSIX file permission modes.

Additionally it is desired, that special “deletion-services” can clean-up the storage-
areas (for example volatile storage-areas) of normal users, too.

This is however not longer possible with traditional POSIX file permission modes,
as two different entities would need write permissions to the same files.

The same problem was for example seen with the “ATLASLOCALGROUPDISK"-
storage-area.

Christoph Anton Mitterer Slide 48

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Access Control Lists in dCache

As explained before, gPlazma returns a number of actual UNIX user-ID(s) * and
group-IDs* as well as some other information to the invoking door-cell. The door-
cell evaluates this data against the ACLs and the traditional POSIX file permission
modes in order to determine whether the access should be granted or not.

Door-cells using gPlazma, support ACLs in the following ways:
= GSldcap-door-cells

Fully support ACLs in addition to traditional POSIX file permission modes.
= GridFTP-door-cells

Fully support ACLs in addition to traditional POSIX file permission modes.
= SRM-door-cells

Directly only support traditional POSIX file permission modes (used for deletion
of files and creation of directories) at the moment.

Indirectly ACLs are “fully supported”, as SRM “delegates” the actual data-
transfer to one of the above protocols.

Christoph Anton Mitterer Slide 49

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Access Control Lists in dCache

For door-cells not using gPlazma the situation with support for ACLs is the
following:
= dcap-door-cells

Fully support ACLs in addition to traditional POSIX file permission modes.

However, entities are always '" mapped to the user nobody and to the group
nogroup, thus making the use of ACLs pointless.

= Xrootd-door-cells
Implement the so called “ALICE security model” which provides an own system
for ACLs.
Unlike with other ACL-systems, the ACLs are here not stored within the file-
system, but in a central catalogue.

xrootd-door-cells fully support the ACL-system from the “ALICE security model”.
It is however not covered by this chapter.

Christoph Anton Mitterer Slide 50

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Access Control Lists in dCache

dCache’s “native” ACLs (not the ones from the “ALICE security model”) are a
subset of the NFS version 4 ACLs, providing nearly all ' of their features.
They are evaluated in addition to the traditional POSIX file permission modes,
which they generally outvote.

The ACLs are stored in the database used by dCache’s file-hierarchy-provider.
They are intended to be used with Chimera, however, apart from some features ™ it
is in principle also possible to use them with the legacy PNFS.

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Enabling Access Control Lists and General Configuration

In order to enable the ACL-system, the following steps must be done:

11f the dCache-cluster is not a “fresh” installation from version 1.9.3 or higher, the
SQL-schemes at dcache-home/libexec/chimera/sql/create-dCacheACL.sql®
and dcache-home/libexec/chimera/sql/pgsgl-procedures.sql must be
imported into a database, typically the same one as used by Chimera.

2The permissionHandler-configuration-parameter must be set to
diskCacheVi1ll.services.acl.ACLPermissionHandler,diskCacheVvi1i11.
services.acl.UnixPermissionHandler or diskCacheVv11l1l.services.acl.
ACLPermissionHandler in the configuration-file of each door-cell that should
use ACLs.

3The Chimera-cell as well as each door-cell that uses ACLs must be able to
communicate with the database where the ACL-tables are stored.
The required parameters to configure this are described below.

4.The Chimera-cell and the specific door-cells must be restarted.

Christoph Anton Mitterer Slide 52

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Enabling Access Control Lists and General Configuration

The following parameters specify how a cell communicates with the DBMS that
holds the ACL-tables and are available in the configuration-files for the Chimera-
cell as well as each type of door-cell that supports ACLs.
maclConnDriver

Specifies the JDBC-driver.
=aclConnuUrl

Specifies the JDBC-connection-URL
=aclConnUser

Specifies the user-name to be used for accessing the database.
=aclConnPswd

Specifies the password to be used for accessing the database.
maclTable

Specifies the name*' of the ACL-table.

Christoph Anton Mitterer Slide 53

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Enabling Access Control Lists and General Configuration

The following parameters specify how a door-cell that supports ACLs makes use of
them:
= permissionHandler
Specifies the “permission-handler” to be used by the door-cell.
The following values are possible:
= diskCacheVlll.services.acl.UnixPermissionHandler
Only the traditional POSIX file permission modes are used.
mdiskCacheVlll.services.acl.ACLPermissionHandler
Only the access control lists are used.

mdiskCacheVlll.services.acl.ACLPermissionHandler,diskCachev1ll.serv
ices.acl.UnixPermissionHandler

Access control lists are used at first, but when they do not specify whether a
given access has to be granted or denied, the traditional POSIX file permission
modes are used.

Christoph Anton Mitterer Slide 54

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

S\ \
e 20

N\
i

G2
v
/i
]

A %’@

Structure of Access Control Lists and Access Control Entries

In addition to the traditional POSIX file permission modes, every file (regular files
and directories) can have exactly one access control list “attached” to it.

An access control list consists of one or more access control entries in a given
order, where each entry specifies a permission for its file.

It is important to understand, that the order of entries can have great influence on
the effective permissions and also that entries can be in “conflict”.

An access control entry consists of four fields, namely its type, flags, principal and
permissions.

More information about access control lists and access control entries can be found
on the nfs4_acl(5) manual page of the nfs4-acl-tools-package.

It should however be noted, that only the ACE-types, -flags, -principals and
-permissions described in this chapter, are currently supported by dCache.

Christoph Anton Mitterer Slide 55

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Access Control Entry Type

ACE types are used to specify the “global” meaning and effect a given ACE.

ACCESS. AL LOWED A An “allow-ACE gllows its pr!nC|paI tq pgrform any
access that requires one of its permissions.

ACCESS DENIED D An “deny-ACE” c!enies its pr_incipal to p_erform any
access that requires one of its permissions.

Within the acladmin-cell another set of symbols is used to specify the ACL type:

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Access Control Entry Flags

ACE flags are used to set group- and inheritance-flags on a given ACE.
An allow- or deny-ACE may contain zero or more ACE flags.

As ACEs are inherited from a parent directory’s ACL, the inheritance-flags can only
be used in ACEs of directories.

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Access Control within dCache
gPlazma and ACLs

Access Control Entry Flags

Name

Symbol

Description

Inheritance-Flags

Newly created regular files will inherit the ACE, but
with its inheritance-flags removed.

FILE_INHERIT f If the DIRECTORY_INHERIT-flag is not set, newly
created subdirectories will also inherit the ACE, but
with the INHERIT_ONLY-flag added.

DIRECTORY_INHERIT d Newly created subdirectories will inherit the ACE.
The ACE will not be considered for permission
INHERIT_ONLY 0 checks, but it will be inherited with its

INHERIT_ONLY-flag removed.

Christoph Anton Mitterer

Slide 58

LUDWIG-

MAXIMILIANS- Access Control within dCache A)f

N
A

N > ?
UNIVERSITAT /,,’g)/

MONCHEN gPlazma and ACLs) f

Access Control Entry Flags

Groups-Flags

Indicates that the principal represents a group

IDENTIFIER GROUP g)
instead of an user.

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Access Control Entry Principal

ACE principals are used to specify the entities to which a given ACE applies.

Name Description

Any entity which is mapped (for example by gPlazma) to the

user -name)
same actual UNIX user-ID as user-name is.

Any entity which is mapped (for example by gPlazma) to the

roup-name .
group same actual UNIX user-ID as group-name is.

Any entity which is mapped (for example by gPlazma) to the
OWNER@ same actual UNIX user-ID as the owning user of the regular file
or directory is.

Any entity which is mapped (for example by gPlazma) to the
GROUP@ | same actual UNIX group-ID as the owning group of the regular
file or directory is.

EVERYONE@ Any entity.

Christoph Anton Mitterer Slide 60

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Access Control Entry Principal

ANONYMOUS@ Any non-authenticated entity (the opposite of AUTHENTICATEDQ@).

AUTHENTICATED@ Any authenticated entity (the opposite of ANONYMOUSQ@).

Within the acladmin-cell another set of symbols is used to specify the ACL principal:

user-name USER:user-1ID

group-name GROUP:group-ID

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Access Control Entry Principal

It should be noted, that the OWNER@-, GROUP@-, and EVERYONE@-principals are not

fully identical with the “user”, “group” and “other” classes from the traditional
POSIX file permission modes.

“group” is only used when “user” does not match and “other” is only used when
neither “user” nor “group” matches.

The principals however work on a “use-the-first-one-that-matches”-basis (thus
EVERYONE@ “includes” OWNER@ and GROUPQ@.

Christoph Anton Mitterer Slide 62

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Access Control Entry Permissions

ACE permissions are used to set different types of permissions on a given ACE.
An ACE should contain one ore more ACE permissions.

The permissions may have a different semantic meaning depending on the file-type
(regular file or directory).

Some permissions may only be usable with a specific file-type.

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Access Control Entry Permissions

Name Symbol Description
READ_DATA r Permission to read from a regular file.
(LIST_DIRECTORY) (1) Permission to list a directory.
WRITE_DATA W Permission to write to a regular file.

(ADD_FILE) (f) Permission to create regular files in a directory.

APPEND_DATA a Permission to append data to a regular file.

(ADD_SUBDIRECTORY) (s) Permission to create subdirectories in a directory.

EXECUTE X Permission to execute a regular file.

Permission to change to a directory.

DELETE d Permission to delete the regular file or directory.

Permission to delete a regular file or subdirectory

DELETE_CHILD D :
- from a directory. %

Christoph Anton Mitterer Slide 64

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Access Control Entry Permissions

Name Symbol Description

Permission to read the attributes of the regular file
or directory.

Permission to write the attributes of the regular file
or directory.

Permission to read the named attributes of the
regular file or directory.

READ_ATTRIBUTES t

WRITE_ATTRIBUTES T

READ_NAMED_ATTRS n

Permission to write the named attributes of the
regular file or directory.

Permission to read the ACL of the regular file or
directory.

Permission to write the ACL of the regular file or
directory.

WRITE_NAMED_ATTRS N

READ_ACL C

WRITE_ACL C

Christoph Anton Mitterer Slide 65

LUDWIG-

MAXIMILIANS- Access Control within dCache A)f

N
A

N > ?
UNIVERSITAT /,,’g)/

MONCHEN gPlazma and ACLs) f

Access Control Entry Permissions

Permission to write the owning user and group of
the regular file or directory.

WRITE_OWNER o)

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Inheritance of Access Control Entries

In contrast to POSIX.1e draft 17 ACLs, with NFS version 4 ACLs it is possible to
specify rules for inheritance of access control entries.

Inheritance is controlled by using the FILE_INHERIT-, DIRECTORY_INHERIT-, and
INHERIT_ONLY-flags on ACEs of directories, as described above.

In addition, the following notes shall be given:

= ACEs are generally only inherited from directories and not from regular files.

= A newly created regular file or directory inherits the ACEs marked for inheritance
from its parent directory’s ACL.

= ACEs are only inherited once at the creation-time of regular file or directory and
not again later.

= Even if DIRECTORY_INHERIT is not setin a parent directory’s ACE, it can be
inherited by a newly created subdirectory, when FILE_INHERIT was seton it.
In this case, INHERIT_ONLY will be added to the inherited ACE.

Christoph Anton Mitterer Slide 67

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Inheritance of Access Control Entries

= dCache generally uses so called “propagating inheritance”, which means that the
FILE_INHERIT- and DIRECTORY_INHERIT-flags are not removed on newly created

subdirectories.
The INHERIT_ONLY-flag is however removed on newly created subdirectories.

= ACEs having the INHERIT_ONLY-flag set are never considered for permissions

checks (on its directory).
= Having the INHERIT_ONLY-flag set on an ACE while neitherthe = FILE_INHERIT-

nor the DIRECTORY_INHERIT-flag is set, is an error.

Christoph Anton Mitterer Slide 68

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Evaluation of Access Control Lists

In order to determine whether an access-request should be granted or denied, a
door-cell evaluates the access control lists and the traditional POSIX file permission
modes, against the possible mappings of an entity, as returned for example by
gPlazma.

Depending on the chosen permission-handler, the following happens:
mdiskCacheVlll.services.acl.UnixPermissionHandler

Only the traditional POSIX file permission modes are evaluated.
mdiskCacheVlll.services.acl.ACLPermissionHandler

Only the access control lists are evaluated.

If an ACL results in “undefined” its actual result is “deny”.

Christoph Anton Mitterer Slide 69

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Evaluation of Access Control Lists

mdiskCacheVvlll.services.acl.ACLPermissionHandler,diskCachevi1i11l.
services.acl.UnixPermissionHandler
For every possible mapping (as returned for example by gPlazma), the access

control lists are evaluated:

= The first time “allow” is returned, this will be used as global result.

= |f always “deny” is returned, this will be used as global result.

= [f always either “deny” or “undefined” is returned, the traditional POSIX file

permission modes are evaluated, which always give an explicit result (“allow”
or “deny”).

Christoph Anton Mitterer Slide 70

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Evaluation of Access Control Lists

The evaluation of an ACL works like the following:

1. If no ACL is present at all for the specific file, the evaluation stops and the result
is “undefined”.

2. An access-request requires one or more permissions. In order to check them, the
ACL is evaluated ACE-by-ACE in their given order.
The principal is taken from the currently evaluated mapping (out of the “possible
mappings”).

3. All required permissions must be explicitly allowed for the result being “allow”.
If a single required permission is explicitly denied, the evaluation stops
immediately and the result is “deny”.
If a single required permission is neither explicitly allowed nor denied, the result
is “undefined”.

4. Each permission is only checked once. This means, that after a permission has
been explicitly allowed or denied it is not further checked within the evaluation
of the same ACL.
Thus, the first allowed- or denied-result “counts” for that single permission.

Christoph Anton Mitterer Slide 71

maxmiians- || Access Control within dCache o/

&7

o

UNIVERS TAT gPlazma and ACLs N

Evaluation of Access Control Lists

The evaluation of the traditional POSIX file permission modes works as described
in the POSIX-standard and as it is well known from any UNIX-like-operating-

system.

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Evaluation of Access Control Lists

It is important to understand the following:

= The order of ACEs can have a great influence on the effective permissions,
especially but not only when using deny-ACEs in the same ACL.

= During evaluation of a given ACL, the first ACE that explicitly allows or denies a
permission is used for that single permission. There is neither a “deny-
overrides™- nor an “allow-overrides-mechanism”.

= NFS version 4 ACLs are using a “default-deny-mechanism”, which means that if a

permission is not explicitly allowed it is denied.
In dCache, but only if the diskCachevill.services.acl.

UnixPermissionHandler-permission-handler is used as fall-back, the result of
those permissions is “undefined” allowing the fall-back-permission-handler to
determine the global result.

If no fall-back-permission-handler is used, it is suggested to try to avoid deny-
ACEs.

Christoph Anton Mitterer Slide 73

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Editing Access Control Lists

There are two ways to edit the ACL of a given regular file or directory:

= uUsing nfs4_getfacl and nfs4_setfacl from the nfs4-acl-tools-package
Detailed documentation can be found in the nfs4_getfacl(1l) and
nfs4_setfacl(1) manual pages of this package.

It should be noted, that this requires a recent enough kernel and tool-set.
= using the dCache administration interface to the acladmin-cell
Detailed information can be found by using the help-command within the

administration interface.

Christoph Anton Mitterer

Slide 74

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

V. Examples and Exercises

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Introduction

The following assumptions are made within the following examples and exercises:

= A working and “fully” configured dCache installation of version 1.9.3 or higher is
used.

= Chimera is used as file-hierarchy-provider.

= PostgreSQL is used as DBMS.

= The student has a basic understanding about dCache and some fundamental
Grid-tools (for example the VOMS-Proxy-Certificate-Tools).

= |f the dCache installation is a cluster spread over multiple hosts, the student
knows when which host and if multiple hosts has to be used for a given step.

= The student has read and understand the previous chapters of this presentation.

Furthermore, the following conventions are used:

= Lines starting with “ $" are entered within a POSIX- sh-compatible shell.

= Lines starting with “ #” are entered within a POSIX- sh-compatible shell, with the
effective user-ID and group-ID being 0 (“root-rights”).

= Lines starting with “ >" are entered within dCache’s administration interface.

= Standard input is written black, standard output grey and standard error red.

Christoph Anton Mitterer Slide 76

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

1. Access Control Lists

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

E1: Enabling Access Control Lists

The goal of this example is to import the required SQL-schemes in the database
and to enable the usage of ACLs for all supporting door-cells.

1. Stop the dCache-cluster and Chimera:
dCache-home/bin/dcache stop
dCache-home/bin/dcacheChimeraNfs stop

2. If the dCache-cluster is not a “fresh” installation from version 1.9.3 or higher,
import the the required SQL-schemes using the psgl-command:

sudo -u postgres psql -f dCache-home/libexec/chimera/sql/create-dCacheACL.sql
chimera®
sudo -u postgres psqgl -f dCache-home/libexec/chimera/sql/pgsql-procedures.sql
chimera
3. In dcache-home/config/dCacheSetup, set the permissionHandler-parameter:
permissionHandler=diskCacheVlll.services.acl.ACLPermissionHandler,diskCacheV11ll.servic
es.acl.UnixPermissionHandler
. Set the parameters for the communication with the DBMS as necessary.

. Start the dCache-cluster and Chimera:
dCache-home/libexec/chimera/chimera-nfs-run.sh start
dCache-home/bin/dcache start

O S

Christoph Anton Mitterer Slide 78

e ans || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

E1: Enabling Access Control Lists

6. Check whether dCache is running correctly and whether its file-hierarchy is
mounted correctly.

If everything has worked, all door-cells should use ACLs now and fall back to
traditional POSIX file permission modes.

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

E2: Exploring the Administration Interface to the acladmin-cell

The goal of this exercise is to explore the administration interface to the acladmin-
cell and to become familiar with it.

1. Connect to the administration interface to the acladmin-cell:
$ ssh -c blowfish -p 22223 admin@localhost
> cd acladmin

2. The help-command can be used to get an overview on all available commands

or detailed information for specific commands:
> help

> help getfacl

> help setfacl

3. Read the documentation to the getfacl- and setfacl-commands.

4. Optionally, try out the getfacl- and setfacl-commands on existing files:

> setfacl /pnfs/dcache.org/data/test-file2 OWNER@:+rw

> getfacl /pnfs/dcache.org/data/test-file2

> setfacl 000O6D7A29890A194624B78155603E977BF9 AUTHENTICATED@:+rwdtTnNcCo
> getfacl 0OOO6D7A29890A194624B78155603E977BF9

It is expected that you well familiar with the syntax of getfacl- and setfacl-
commands. If not repeat step 3.
Christoph Anton Mitterer Slide 80

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

E3: Simple ACLs — Allowing “Read-Access”

The goal of this exercise is to show a simple ACL, which allows “read-access” for a
file’s owning user.

1. Set up the traditional POSIX file permission modes of a regular file to deny any

aCCess.
chmod a= /pnfs/dcache.org/data/test-file3

2. Trying to read the regular file should give an authorisation-error:
$ globus-url-copy gsiftp://localhost/pnfs/dcache.org/data/test-file3 file://"$
{PWD}"/downloaded-test-file3
error: globus_ftp_client: the server responded with an error
550 Permission denied

3. Add an ACL for the regular file that permits its owning user to read:
> setfacl /pnfs/dcache.org/data/test-file3 OWNER@:+r

4. Repeat step 2, which should succeed now.

Of course, this alone would also be possible with traditional POSIX file permission
modes.

Christoph Anton Mitterer Slide 81

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

E4: Simple ACLs — Denying “Read-Access”

The goal of this exercise is to show a simple ACL, which denies “read-access” for a
specific user.

1. Set up the traditional POSIX file permission modes of a regular file to allow any

read-access:
chmod a=r /pnfs/dcache.org/data/test-file4

2. Trying to read the regular file should work:

$ globus-url-copy gsiftp://localhost/pnfs/dcache.org/data/test-file4 file://"$
{PwWD}"/downloaded-test-file4

3. Add an ACL for the regular file that denies a specific user to read:
> setfacl /pnfs/dcache.org/data/test-file4 USER:user-ID:-r

4. Repeat step 2, which should give an authorisation-error now:
error: globus_ftp_client: the server responded with an error
550 Permission denied

Using traditional POSIX file permission modes, it would only be possible to deny
read-access for a single user (namely the owning user) or a single group (namely
the owning group).

Christoph Anton Mitterer Slide 82

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

ES5: Simple ACLs — Further Exercises

The goal of this exercise is to further explore and try out some simple ACLs.

1. Try to set up an ACL for a regular file, that allows it to be read by any
authenticated entity, to be written and deleted by the owning user, to be

appended by the owning group and to be deleted by some individual user.

> setfacl /pnfs/dcache.org/data/test-file5 AUTHENTICATED@:+r OWNER@:+wd GROUP@:user -
ID:+a USER:user-ID:+d

2. Try to set up an ACL for a directory, that allows it only to be listed by its owning

user and group.
> setfacl /pnfs/dcache.org/data/test-directory5a USER@:+1 GROUP@:+1

3. Try to set up an ACL for a directory, that allows it to be listed and changed to by
everyone, where only the owning user can delete regular files and directories
and where only the owning user and group can create new regular files and

subdirectories.
> setfacl /pnfs/dcache.org/data/test-directory5b OWNER@:+fsD GROUP@:+fs EVERYONE@:+1x

. Think about whether the order of the above ACLs matters or not.
. Think about whether this is influenced by the file’s traditional POSIX file
permission modes. If so how could this be avoided?

o~

Christoph Anton Mitterer Slide 83

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

EG: Order of ACEs

The goal of this exercise is to show that the order of ACEs can have a great
influence on the effective permissions.

1. Set up the traditional POSIX file permission modes of a regular file to deny any

aCCess.
chmod a= /pnfs/dcache.org/data/test-file6

2. Add the following ACL to a regular file:
> setfacl /pnfs/dcache.org/data/test-file6 OWNER@:+r OWNER@:-r

3. Trying to read the regular file should work:
$ globus-url-copy gsiftp://localhost/pnfs/dcache.org/data/test-file6 file://"$
{PWD}"/downloaded-test-file6

4. Switch the order of ACEs:
> setfacl /pnfs/dcache.org/data/test-file6 OWNER@:-r OWNER@:+r

5. Repeat step 2, which should give an authorisation-error now:
error: globus_ftp_client: the server responded with an error
550 Permission denied

This demonstrates that even a simple swapping of rules totally changes the
effective permissions.

Christoph Anton Mitterer Slide 84

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

E7: ACLs and Multiple Possible Mappings

The goal of this exercise is to demonstrate some simple ACLs when the client’s
certificate leads to multiple possible mappings.

In this example, the client’s certificate is supposed to be able to have multiple
FQANSs (namely one with the “production”- and one with the “admin”-role). Thus
the possible mappings (as returned for example by gPlazma) can lead to exactly
one user-ID and up to 3 group-IDs.

Different FQANs on the VOMS-proxy-certificate can be created with:

voms-proxy-init --voms dcache
voms-proxy-init --voms dcache:dcache/Role=production
voms-proxy-init --voms dcache:dcache/Role=production --voms dcache:dcache/Role=admin

1. Set up the traditional POSIX file permission modes of three regular files to deny

dany access.
chmod a= /pnfs/dcache.org/data/test-file7a /pnfs/dcache.org/data/test-file7b

/pnfs/dcache.org/data/test-file7c

Christoph Anton Mitterer Slide 85

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

E7: ACLs and Multiple Possible Mappings

2Set the owning group of two of the files to different groups:
chown :production /pnfs/dcache.org/data/test-file7b
chown :admin /pnfs/dcache.org/data/test-file7c

3Add an ACL for the regular file that permits its owning group to read, but denies

everyone else (including the owning user):

> setfacl /pnfs/dcache.org/data/test-file7a GROUP@:+r
> setfacl /pnfs/dcache.org/data/test-file7b GROUP@:+r
> setfacl /pnfs/dcache.org/data/test-file7c GROUP@:+r

4.Trying to read the regular files should only work, when the corresponding
FQANSs are set in your VOMS-proxy-certificate.

50ptionally, expand your ACLs with deny-ACEs for one of the possible mappings
and try reading with different FQANSs set in your VOMS-proxy-certificate. Think
about why it works or not.

Christoph Anton Mitterer Slide 86

LMU maamuans- || Access Control within dCache

UNIVERSITAT

MONCHEN gPlazma and ACLs ALY

E8: Multiple Matching Principals per evaluated ACL and Deny-ACEs

The goal of this exercise is to demonstrate the effects of deny-ACEs when multiple
principals match per evaluated ACE. The client’s certificate should have no
additional FQANSs.

1Set up the traditional POSIX file permission modes of a regular file to deny any

dCCessS.
chmod a= /pnfs/dcache.org/data/test-file8

2Add an ACL for the regular file that permits its owning user to read and denies

everyone else:
> setfacl /pnfs/dcache.org/data/test-file8 EVERYONE@:-r OWNER@:+r

3Trying to read the regular file should give an authorisation-error:
$ globus-url-copy gsiftp://localhost/pnfs/dcache.org/data/test-file8 file://"$
{PWD}"/downloaded-test-file
error: globus_ftp_client: the server responded with an error
550 Permission denied

4Switch the order of ACEs:
> setfacl /pnfs/dcache.org/data/test-file8 OWNER@:+r EVERYONE@:-r

5Repeat step 3, which should succeed now.
6.Think about, why this happens.

Christoph Anton Mitterer Slide 87

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Access Control within dCache
gPlazma and ACLs

E9: Inheriting ACEs

The goal of this exercise is to demonstrate inheritance of ACEs.

1. Are the following ACLs possible and if not why:
> setfacl /pnfs/dcache.org/data/test-file9a OWNER@:+r:fd
> setfacl /pnfs/dcache.org/data/test-file9b GROUP@:+d:1i
> setfacl /pnfs/dcache.org/data/test-directory9a OWNER@:+1fsxdD:fdi
> setfacl /pnfs/dcache.org/data/test-directory9b EVERYONE@:-1fs:fd

2. Add some ACLs to directories using the different inheritance flags:

>

VV VYV

>

setfacl
setfacl
setfacl
setfacl
setfacl
setfacl

/pnfs/dcache.
/pnfs/dcache.
/pnfs/dcache.
/pnfs/dcache.
/pnfs/dcache.
/pnfs/dcache.

org/data/test-test-directory9c
org/data/test-test-directory9d
org/data/test-test-directory9e
org/data/test-test-directory9f
org/data/test-test-directory9g
org/data/test-test-directory9h

OWNERQ@:
OWNERQ@:

OWNERQ@:
OWNER@:
OWNERQ@:
OWNER@:

+r
+r
+r
+r
+r
+r

T
:d

: fd
i
rdi
s fdi

3. Try to create regular files (using globus-url-copy) and subdirectories (using
edg-gridftp-mkdir) below them.
4. In the administration interface to the acladmin-cell, see how the ACEs were
inherited by the regular files and directories.

Christoph Anton Mitterer

Slide 88

LMU maamuans- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

E10: A Real World Example

The goal of this exercise is to demonstrate the benefits of ACLs using a “real world
scenario’. It is similar to the one from the ATLAS-experiment, as described above.

Within a given directory and its subdirectories:

= Everyone should be allowed to read all regular files and to list and change to all
directories.

= “Normal” users should be allowed to create new regular files and directories.

= “Normal” users should further be allowed to write to any regular file.

= “Normal” users and those with the “production”-role should be allowed to delete
regular files and directories.

It is impossible to realise this with traditional POSIX file permission modes.

1. Create the base-directory:
$ edg-gridftp-mkdir gsiftp://localhost/pnfs/dcache.org/data/test-directoryl10

2. Add an ACL for the directory that implements the constraints from above:
> setfacl /pnfs/dcache.org/data/test-directoryl® EVERYONE@:+r:f EVERYONE@:+1x:d
GROUP:normal-group-ID:+fs:d GROUP:normal-group-ID:+w:f GROUP:normal-group-ID:+d:fd
GROUP:normal-group-ID:+D:d GROUP:production-group-ID:+d:fd GROUP:production-group-ID:
+D:d

Christoph Anton Mitterer Slide 89

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

E10: A Real World Example

3. Try to create new regular files (using globus-url-copy)and new subdirectories
(using edg-gridftp-mkdir) at some levels below the base-directory.

4. In the administration interface to the acladmin-cell, see how the ACEs were
inherited by the regular files and directories.

. Try to list the directories at several levels (using edg-gridftp-1s).

. Try to remove regular files (using edg-gridftp-rm)and directories (using edg-
gridftp-rmdir) as “normal” user and with the “production”-role.

7. Think about why it is impossible to realise this exercise with only traditional
POSIX file permission modes. There are at least two important reasons.

. Think about why inheritance is required.

. Think about whether it would make sense to use the INHERIT_ONLY-flag.

o O

O

Christoph Anton Mitterer Slide 90

LMU waximiLians- || Access Control within dCache

LUDWIG-

UNIVERS AT gPlazma and ACLs

Footnhotes

1.

2.

Via disabling gPlazma and the kpwdFile configuration-parameterin dcCache-
home/config/gridftpdoorSetup and dCache-home/config/srmSetup.

When invoking gPlazmaas module, it is even possible to set a separate
“gPlazma-policy-configuration-file” for each door-cell via the gplazmaPolicy
configuration-option in its respective configuration-file (for example dCache-
home/config/gsidcapdoorSetup, dCache-home/config/gridftpdoorSetup or
dCache-home/config/srmSetup).

. In the configuration files dCache-home/config/gridftpdoorSetup, dCache-

home/config/srmSetup and dCache-home/config/utilitySetup.

. Whether multiple user-IDs and group-IDs can occur or not, depends in principle

on the used plug-in and with some plug-ins on the usage of the “storage-
authzdb-style”-file.
This however, reflects the current possible way.

. “grid-mapfile-style”-files as defined by the Globus Toolkit documentation would

allow more mappings per line. This is however not supported by dCache.

Christoph Anton Mitterer Slide 91

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Footnhotes

6V O-attributes and their use in so called “Fully Qualified Attribute Names” is

standardised by the EU’s DataGrid project in the “VOMS Credential Format™-
document.

7Actually, the “ *” regular expression needs not to be quoted.
8Currently, this uses the same configuration parameter as the “gplazmalite-
vorole-mapping’-plug-in.
9These must be presentin /etc/grid-security/ and /etc/grid-security/
certificates/.
10Using an XACML-profile for Grid Services.
11The current default “storage-authzdb-style”-version is 2.1.

12Although gPlazma supports priorities of entries, the concept is currently not
used by any type of door-cell.

13The priority of a 2.1 - storage-authzdb-style”-version-entry is implicitly setto @.
14Access “above” the user’s root-directory is generally impossible.

151t depends on the specific built-in function whether multiple values are
returned or not.

Christoph Anton Mitterer Slide 92

waxmians- || Access Control within dCache
LMU NV ERS AT gPlazma and ACLs

MUNCHEN

Footnhotes

16. Currently, the role_gidmap-function, maps each FQAN to exactly one group-
ID. This might however change in the future.

17. This actually depends on whether the access is done via a dcap-URI or locally
via a mounted dCache-file-system.
In the first case, the user is always nobody and the group is always nogroup.
This also applies to the second case, but only when “strong-authentication” is
activated, which is the default. If it is deactivated, the client can specify any
user and group, which is apparently a security-risk.

TODO

18. dCache’s ACLs are missing some features like “no-propagating inheritance”. An
exact list can be found by comparing the ACE-types, -flags, -principals and
-permissions described in chapter IV with the specifications from the NFS
version 4 ACLs.

19. ACE-inheritance and the inheritance-flags cannot be used with PNFS as
dCache’s file-hierarchy-provider.

Christoph Anton Mitterer Slide 93

LUDWIG-

LMU waximiLians- || Access Control within dCache

UNIVERS AT gPlazma and ACLs

Footnhotes

20The ACL-tables created by dcache-home/libexec/chimera/sql/create-
dcacheAcCL.sql will allow old file-IDs from the legacy PNFS to be used, while
with the very similar SQL-scheme in dCache-home/libexec/chimera/sql/
addACLtoChimeraDB.sqgl new file-IDs from Chimera are required.

21The suggested and default name is t_acl.

22Some NFS version 4 servers will allow to delete the regular file or directory if

either DELETE is set in its specific ACE or DELETE_CHILD is set in the specific
ACE of its parent directory.

Currently, dCache allows it with both.

Christoph Anton Mitterer Slide 94

LUDWIG-

waximiLians- || Access Control within dCache

UNIVERS TAT gPlazma and ACLs

Acknowledgements

The following people helped somehow to create this presentation (given in
alphabetical order):
=von Berg, Anna

= Fuhrmann, Patrick
= Hesselroth, Ted

= Jung, Christopher
= Kozlova, Irina

= Mejia, Jose

= Mkrtchyan, Tigran
= Mol, Xavier

= Synge, Owen

= Tsigenov, Oleg

waxmians- || Access Control within dCache
I_Mu UNIVERSITAT | gPlazma and ACLs

Finis coronat opus.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

