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Infroducing Macaroons
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Macaroons “cheat-sheet”

Macaroon is a bearer token.

Macaroon contains zero or more caveats.

Each caveat limits something about the macaroon:

who can use it,
when they can use itf, or
what they do with it.

« Anyone can add a caveat to a macaroon
... Creating a new, more limited mnacaroon.

e NO one can remove a caveat from a macaroon
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What are macaroons good for?
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What macaroons good for? -
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What macaroons good for?

There are lofs more possibllities...

» Hiding authentication mechanism (e.g., X.509)
from users

e Cenftralised authorisation service

Macaroons are a basic building-block that
has many potential uses.
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Enough theory, now for dCache ...
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Getting a macaroon

« Unfortunately no standard way of doing this ... here's how with dCache
» Currently via the HTTP/WebDAYV door:
* Request is HTTP POST:

* Must be SSL/TLS connection and include HTTP header:
Content-Type: application/macaroon-request

» Optional request body is JSSON object, like:
¢ “caveats”: [ “caveat-1", “caveat-2", ..],
“validity”: “<validity>"
}
The “caveats” and “validity” fields are opfional.
JSON object is optional - empty caveats and validity.

* If successful, response is JSSON object with macaroon item
{

“macaroon”: “MDAwZmxvY2FOa....”

}
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Using a macaroon

When authenticating with dCache:

« Standard HTTP request header:
Authorization: BEARER <macaroon>

* For awkward clients, embed macaroon in the URL:
https://webdav.example.org/mydir/file?authz=<macaroon>

For 3 party HTTP transfers (dCache authenticating with
remote stforage):

« WebDAV COPY request, add header:
TransferHeaderAuthorization: BEARER <macaroon>

 SRM srmCopy requst, include TExtralnfo; e.q.,
srmcp "-extraInfo=header-Authorization:BEARER <macaroon>"
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Six caveats supporied

» Unforfunately, there are no standard caveats. Here are those that
dCache understands:

* Three path caveats:
* root:<path> - chroot intfo this directory,
* home: <path> - the user's home directory (not currently used),
« path:<path> - only show this path.
* Two context caveats:
e before:<timestamp> - when macaroon expires,
« ip:<netmask list> — reduce which clients can use macaroon.
* One permissions caveat:

e activity:<comma-list> — what operations are allowed.
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How path caveats affect namequge
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Time caveat - expiring macaroon

before:<timestamp>

where <timestamp> is ISO 8601 UTC time;
e.g, before:2017-05-29T716:00:00Z

* Once time has elapsed, macaroon is useless.
« Validity can be reduced by adding more before: caveats.

« Short-cut: use the validity value in JSON request.

Calculates and adds a corresponding before: caveat.
The value is ISO 8601 duration; e.g., PT3S for 3 seconds.

Request JSON like {#“validity”="PT1M"”} returns a macaroon
valid for 1 minufte.
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Client IP caveat - limit who can use it

ip:<netmask-list>

where <netmask-1list> is a comma-separated list of subnets or
addresses; e.g.,

1p:198.51.100.42,2001:dh8:85a3::8a2:37:733, «
192.0.2.0/24,2001:db8:cafe::/48

« Client's IP address must match (at least) one of the ip:
caveat's <netmask-list>.

« Adding more ip: cavedats allows further restriction; e.Q.,

1p:198.51.100.0/24 resirict to campus subnet
1p:198.51.100.28 only a specific machine

 NO ip: caveats means all clients may use the macaroon.
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Activity caveats - limited what is allowed

activity:<activity-list>
where <activity-1list> is a comma-separated list of
allowed activities; e.Q.,

activity:DOWNLOAD, LIST
e Possible activities are:

DOWNLOAD, UPLOAD, DELETE, MANAGE, LIST, READ_METADATA,
UPDATE_METADATA.

« Allowed activity may be further reduced by adding more
activity: caveats.

No activity: caveat means client can do whatever the user
requesting the macaroon can do.
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Demo

« Show curl can upload and download files.

* Show web-browser can see whole namespace.

« Create an unrestricted macaroon.,

« Show curl upload/download and web-browser work with macaroon.

« New macaroon with caveafs:
activity:DOWNLOAD, LIST
path:/path/to/myfile
“validity” :“PT5M"”

 Share modified macaroon with audience as QR code.

* Browse in web-browser with macaroon; use curl to show download works,
upload doesn't.

« Wait for timeout.
* Show macaroon doesn't work any more (ask audience to verify)
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Backup slides
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Combining caveats: namespace

* The root caveats and path caveats combine to create a more
restricted caveat:

root:/foo

root : /bar equivalent to root:/foo/bar

« The path and home caveats are relative to the effective root when
declared:

home:/foo/bar/home root:/foo/bar
root:/foo equivalent to home: /home
path:/bar/baz path:/baz
root:/bar

« Adding root: outside an existing path: results in a non-functioning
macaroon.

« Multiple home : caveats have last-one-wins.
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Demo #2: root and path

« Show dCache has several directories with content.
» Create read-only macaroon
Browser dCache name-space with this macaroon
« New macaroon with root: /path-1 caveat.
Browser dCache name-space

« New macaroon with path:/path-1/path-2/myfile
caveat

show only /path-1/path-2/myfile is visible.
 New macaroon from previous, with root:/path-1
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Demo #3: expiry time

» Show dCache has several directories with content.

« Create macaroon with path:/path/to/file caveat with
expiry fime five minutes in the future.

e Create a count-down timer window for when macaroon expires
« Show dCache can read the file OK.

« Creafe a QR code and share it with the audience.

* Ask audience to try to view the picture.

« Continue talking until window times ouf.

 When macaroon expires, show file cannot be read
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Activity caveat - limit what can be done

e Formart:
activity:<activities>

where <activities> is a comma-separated list: one or
more of LIST, DOWNLOAD, MANAGE, UPLOAD, DELETE,
READ_METADATA, UPDATE_METADATA.

e No caveat is the same as all activities:
activity:LIST, DOWNLOAD, MANAGE, UPLOAD, DELETE,
READ_METADATA, UPDATE_METADATA

* Multiple caveats are allowed,

Subsequent caveats must be a subset of earlier caveats.
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Root caveat — a bit like '‘chroof’

e Format:
root:<path>

e No root caveat is the same as root:/

» User sees only files and directories under this path.
* Multiple caveats are allowed,

Subsequent caveats are resolved relatfive to the
previous caveat. Must not e inconsistent with any
path caveat.
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Home caveat - an initial directory

e Format:
home : <path>

« No home caveat is the same as home: /
 How this Is used is protocol and client specific
* Multiple caveats are allowed,

Caveats are resolved relative to the current root.
Value is automatically updated affer a root caveat.
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Path caveat - specific target

e Format:
path:<path>

« No home caveat is the same as path:/

* The paths of files and directories are unaffected, but only
directories leading up to <path> or have <path> as o
prefix are visible.

You don't want to change the URL, but only allow access to this
URL.

* Multiple caveats are allowed,

Caveats are resolved relative to the current path.
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Quick recap
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Authorisation without quthenticatioﬁ?

Photo by Alan_ Cleaver (CC-BY)
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Download / Share with macqroons
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OpenlD Connect delegation
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3" party caveats - extra cool!

A Ist party caveat can be saftisfied by the client.

« A 39 party caveat requires proof from some
ofther service; e.gQ.

« only fred@facebook,
* only members of VO ATLAS,
« only if not part of a denial-of-service attack.

* The proof is another macaroon: a discharge
macaroon.
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Download with 3"“-party caveat
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What are bearer tokens?

Bearer token is something the user presents with a request so

the server will authorise it. There's no inferaction between client
and server,

Examples of bearer tokens:

HTTP BASIC authn, anything
stored as a cookies.

Counter-examples:
« X.509 credential,
« SAML,

» Kerberos.
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Group membership, oo

 An OIDC provider can assert the user is a
member of various groups

* Group membership may require higher
level of LOA:

For example, if the group is “loose
collaboration” a site might require higher LOA; if
the group Is “commercial entity” a site might

require lower LOA




One solution: a bearer token
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