dCacheorg

o —

dCache and macaroons

Anupam Ashish, on behalf of the dCache team

dCache Workshop 2017 at Umed, Sweden
2017-05-29
<URL here>

ﬂ NDGF @ @ fHELMHOLTZ
INDIGO - DataCloud

| ASSOCIATION

dCacheorg &

Infroducing Macaroons

dCacheorg &

Macaroons “cheat-sheet”

Macaroon is a bearer token.

Macaroon contains zero or more caveats.

Each caveat limits something about the macaroon:

who can use it,
when they can use itf, or
what they do with it.

« Anyone can add a caveat to a macaroon
... Creating a new, more limited mnacaroon.

e NO one can remove a caveat from a macaroon

dCacheorg &
——

o —

What are macaroons good for?

User 1. Request a
DB mMmacaroon -
| Request a -
GET > Porta nMacaroon M

4>

307 D
E 2. Send to colleague
(e.g. via email)
-\ GET/PUT/
GET M > DELETE |\
- -

Request data directly 3. Use macaroon

from dCache

Community Portals Delegating/Sharing

dCacheorg &

What macaroons good for? -

oM *
1. Request a macaroon QS\ m @\7&
Source < M
Storage — Client ‘
Service M
|
only READ,

only this file,
2. Request only for 10 minutes.
39-party
GET copy with
3. HTTP GET macaroon
with
macaroon
Dest.
Storage
Service

Authorising third party copies

dCacheorg &

What macaroons good for?

There are lofs more possibllities...

» Hiding authentication mechanism (e.g., X.509)
from users

e Cenftralised authorisation service

Macaroons are a basic building-block that
has many potential uses.

dCacheorg &
= _;_//\

Enough theory, now for dCache ...

dCacheorg &

Getting a macaroon

« Unfortunately no standard way of doing this ... here's how with dCache
» Currently via the HTTP/WebDAYV door:
* Request is HTTP POST:

* Must be SSL/TLS connection and include HTTP header:
Content-Type: application/macaroon-request

» Optional request body is JSSON object, like:
¢ “caveats”: [“caveat-1", “caveat-2", ..],
“validity”: “<validity>"
}
The “caveats” and “validity” fields are opfional.
JSON object is optional - empty caveats and validity.

* If successful, response is JSSON object with macaroon item
{

“macaroon”: “MDAwZmxvY2FOa....”

}

dCacheorg &

Using a macaroon

When authenticating with dCache:

« Standard HTTP request header:
Authorization: BEARER <macaroon>

* For awkward clients, embed macaroon in the URL:
https://webdav.example.org/mydir/file?authz=<macaroon>

For 3 party HTTP transfers (dCache authenticating with
remote stforage):

« WebDAV COPY request, add header:
TransferHeaderAuthorization: BEARER <macaroon>

 SRM srmCopy requst, include TExtralnfo; e.q.,
srmcp "-extraInfo=header-Authorization:BEARER <macaroon>"

dCacheorg &

Six caveats supporied

» Unforfunately, there are no standard caveats. Here are those that
dCache understands:

* Three path caveats:
* root:<path> - chroot intfo this directory,
* home: <path> - the user's home directory (not currently used),
« path:<path> - only show this path.
* Two context caveats:
e before:<timestamp> - when macaroon expires,
« ip:<netmask list> — reduce which clients can use macaroon.
* One permissions caveat:

e activity:<comma-list> — what operations are allowed.

dCacheorg &

How path caveats affect namequge

—bar

. |
5

ﬂ

I
g
I

Adding caveat
root:/data

&g

[UERIER

LI

LAl

1170

Adding caveat

path:/data/calib

Ry R

(g

dCacheorg &

Time caveat - expiring macaroon

before:<timestamp>

where <timestamp> is ISO 8601 UTC time;
e.g, before:2017-05-29T716:00:00Z

* Once time has elapsed, macaroon is useless.
« Validity can be reduced by adding more before: caveats.

« Short-cut: use the validity value in JSON request.

Calculates and adds a corresponding before: caveat.
The value is ISO 8601 duration; e.g., PT3S for 3 seconds.

Request JSON like {#“validity”="PT1M"”} returns a macaroon
valid for 1 minufte.

dCoche.org »

Client IP caveat - limit who can use it

ip:<netmask-list>

where <netmask-1list> is a comma-separated list of subnets or
addresses; e.g.,

1p:198.51.100.42,2001:dh8:85a3::8a2:37:733, «
192.0.2.0/24,2001:db8:cafe::/48

« Client's IP address must match (at least) one of the ip:
caveat's <netmask-list>.

« Adding more ip: cavedats allows further restriction; e.Q.,

1p:198.51.100.0/24 resirict to campus subnet
1p:198.51.100.28 only a specific machine

 NO ip: caveats means all clients may use the macaroon.

dCoche.org »

Activity caveats - limited what is allowed

activity:<activity-list>
where <activity-1list> is a comma-separated list of
allowed activities; e.Q.,

activity:DOWNLOAD, LIST
e Possible activities are:

DOWNLOAD, UPLOAD, DELETE, MANAGE, LIST, READ_METADATA,
UPDATE_METADATA.

« Allowed activity may be further reduced by adding more
activity: caveats.

No activity: caveat means client can do whatever the user
requesting the macaroon can do.

dCache.org }_\

LIVEDEMO

IALSO LIKETO LIVE
DANGEROUSLY

ghegenarator.net

dCoche.org »

Demo

« Show curl can upload and download files.

* Show web-browser can see whole namespace.

« Create an unrestricted macaroon.,

« Show curl upload/download and web-browser work with macaroon.

« New macaroon with caveafs:
activity:DOWNLOAD, LIST
path:/path/to/myfile
“validity” :“PT5M"”

 Share modified macaroon with audience as QR code.

* Browse in web-browser with macaroon; use curl to show download works,
upload doesn't.

« Wait for timeout.
* Show macaroon doesn't work any more (ask audience to verify)

dCacheorg &

Backup slides

dCache | Paul Millar | 2016-09-13 | Page 17

dCacheorg &

Combining caveats: namespace

* The root caveats and path caveats combine to create a more
restricted caveat:

root:/foo

root : /bar equivalent to root:/foo/bar

« The path and home caveats are relative to the effective root when
declared:

home:/foo/bar/home root:/foo/bar
root:/foo equivalent to home: /home
path:/bar/baz path:/baz
root:/bar

« Adding root: outside an existing path: results in a non-functioning
macaroon.

« Multiple home : caveats have last-one-wins.

dCoche.org »

Demo #2: root and path

« Show dCache has several directories with content.
» Create read-only macaroon
Browser dCache name-space with this macaroon
« New macaroon with root: /path-1 caveat.
Browser dCache name-space

« New macaroon with path:/path-1/path-2/myfile
caveat

show only /path-1/path-2/myfile is visible.
 New macaroon from previous, with root:/path-1

dCacheorg &

Demo #3: expiry time

» Show dCache has several directories with content.

« Create macaroon with path:/path/to/file caveat with
expiry fime five minutes in the future.

e Create a count-down timer window for when macaroon expires
« Show dCache can read the file OK.

« Creafe a QR code and share it with the audience.

* Ask audience to try to view the picture.

« Continue talking until window times ouf.

 When macaroon expires, show file cannot be read

dCacheorg &

Activity caveat - limit what can be done

e Formart:
activity:<activities>

where <activities> is a comma-separated list: one or
more of LIST, DOWNLOAD, MANAGE, UPLOAD, DELETE,
READ_METADATA, UPDATE_METADATA.

e No caveat is the same as all activities:
activity:LIST, DOWNLOAD, MANAGE, UPLOAD, DELETE,
READ_METADATA, UPDATE_METADATA

* Multiple caveats are allowed,

Subsequent caveats must be a subset of earlier caveats.

dCacheorg &

Root caveat — a bit like '‘chroof’

e Format:
root:<path>

e No root caveat is the same as root:/

» User sees only files and directories under this path.
* Multiple caveats are allowed,

Subsequent caveats are resolved relatfive to the
previous caveat. Must not e inconsistent with any
path caveat.

dCacheorg &

Home caveat - an initial directory

e Format:
home : <path>

« No home caveat is the same as home: /
 How this Is used is protocol and client specific
* Multiple caveats are allowed,

Caveats are resolved relative to the current root.
Value is automatically updated affer a root caveat.

dCacheorg &

Path caveat - specific target

e Format:
path:<path>

« No home caveat is the same as path:/

* The paths of files and directories are unaffected, but only
directories leading up to <path> or have <path> as o
prefix are visible.

You don't want to change the URL, but only allow access to this
URL.

* Multiple caveats are allowed,

Caveats are resolved relative to the current path.

dCacheorg &

Quick recap

dCache.org }_\

Authorisation without quthenticatioﬁ?

Photo by Alan_ Cleaver (CC-BY)

dCacheorg &

Download / Share with macqroons

Storage
Service
(source)

oC

Portal

A

Storage
Service
(dest.)

W

/%
g@v

NS

only READ,
only from <IP addr>,
only for 2 minutes.

dCacheorg

OpenlD Connect delegation

/

4 INDIGO INDIGO
' Service Service

Portal Storage
... Or ...
Storage #1 Storage #2
o]

dCacheorg &

3" party caveats - extra cool!

A Ist party caveat can be saftisfied by the client.

« A 39 party caveat requires proof from some
ofther service; e.gQ.

« only fred@facebook,
* only members of VO ATLAS,
« only if not part of a denial-of-service attack.

* The proof is another macaroon: a discharge
macaroon.

dCacheorg &

Download with 3"“-party caveat
oY
A

A
) O ;é @ \/
o K PortalQ Y JE = /

Service

—_— — [\ [\ only READ,
only from <IP addr>,
only for 1 minute,

A only if member-of-A.

Group

\ ﬁ Service

User /
y Is member-of-A.

dCacheorg A

What are bearer tokens?

Bearer token is something the user presents with a request so

the server will authorise it. There's no inferaction between client
and server,

Examples of bearer tokens:

HTTP BASIC authn, anything
stored as a cookies.

Counter-examples:
« X.509 credential,
« SAML,

» Kerberos.

dCacheorg &

Group membership, oo

 An OIDC provider can assert the user is a
member of various groups

* Group membership may require higher
level of LOA:

For example, if the group is “loose
collaboration” a site might require higher LOA; if
the group Is “commercial entity” a site might

require lower LOA

One solution: a bearer token

User's
web-browser

< Login

>

Reaq. downloa>

Authentication

D
User
DB

Req. token >

dCacheorg &

= _—

—

N

Portal
@upply token
< Redirect}T
AN
Req. download L

>

<

Redirect

Req. download

>

Stream

data

<

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

