USATLAS dCache System at BNL

Zhenping (Jane) Liu, Razvan Popescu ATLAS Computing Facility, Physics Department Brookhaven National Lab

08/30/2005 DESY dCache Workshop

Agenda

- BNL dCache system
- Plans
- Experiences and issues
- Suggestions

BNL dCache system

- In production service from November 2004.
- Works as a distributed disk caching system as a frontend for Mass Storage System -HPSS system.

BNL dCache system (Cont.)

- Hybrid model for read pool servers
 - Each node in Linux farm acts as both storage and computing unit.
- Dedicated core servers and write servers
 - Dedicated PNFS node, door nodes, write pool nodes.
 - More critical.
- Optimized backend tape prestage batch system.
 - Oak Ridge Batch System
- System Architecture (see the next slide)

Size of the current system

Server Type	Numbers of servers	Disk cache space
PNFS Core server node	1 (dedicated)	N/A
SRM server node	1 (dedicated)	N/A
GridFTP and DCAP Core server nodes	4 (dedicated)	N/A
Internal/External Read pool nodes	322 (shared)	145 TB
Internal/External write pool nodes	8 (dedicated)	1 TB
Total	336	146 TB

Usage of the system

- Total amount of datasets (only production data counted)
 - **82.3TB** as of 08/23/2005
 - Used by Rome production grid jobs as data source.
 - Positive feedback.
 - Will use dCache as data source and destination, and also repository of intermediate data in the next version.
 - Used in SC3 testing phase.

Statistics on transfer actions

Transfer Statistics (Daily Average)

	#	Restore Rate	#	Store Rate	#	Mover
	Restore	(GB/day)	Store/day	(GB/day)	Movers	transfer
	/day				/day	rate(GB/day)
2005-Feb	236	59.0	1789	294.5	5403	1051.4
2005-Mar	311	84.5	2295	270.4	4111	461.2
2005-Apr	672	165.0	6891	442.9	14019	771.4
2005-May	450	96.8	5550	369.4	17950	972.6
2005-Jun	170	42.9	3218	166.6	9393	456.4
2005-Jul	564	173.1	5103	3174.1	8694	3853.1
2005-Aug	1272	48.9	2364	383.1	3801	1240.3

Note: SC3 testing Phase was run in July

Clients

On-site users

- Clients from Linux farm nodes (CONDOR jobs).
 - Local analysis application (using DCAP library or dccp)
 - Production grid jobs (submit to BNL)
- Other users
- Off-site users
 - GridFTP clients
 - Production grid jobs from remote sites
 - Other grid users
 - SRM clients

Evaluation on dCache usage

- Pretty positive on the whole
 - Long-term solution for grid-enabled storage element.
 - USATLAS tier-2 centers will deploy dCache as storage elements soon.
- Nontrivial issues existed.

Long-term plan

- To build petabyte-scale grid-enabled storage system
 - Several Petabyte ATLAS data generated every year.
 - Petabyte-scale disk space on thousands of farm nodes to hold most data in disk.
 - HPSS as tape backup for all data.

Long-term plan (Cont.)

- DCache as distributed storage system solution
 - Advantages:
 - Unified namespace;
 - load balanced and fault tolerant
 - Multiple servers of same type, e.g., pools, all doors
 - Dynamically replicate files to avoid hot spot.
 - High performance
 - Direct data I/O from/to pool servers
 - Aggregated data throughput can be very high.
 - Clever selection mechanism and flexible system tuning;
 - Multiple access protocols (including standard grid interfaces);
 - Cheap Linux farm solution to achieve high performance throughput.

Long-term plan (Cont.)

- Issues: potential bottlenecks in dCache
 - Centralized metadata database currently.
 - Single metadata management component (PnfsManager).
- Many issues need to be investigated
 - Is dCache scalable to large cluster (thousands of nodes)?
 - Higher PNFS hit rate expected.
 - Many small dCache systems or one/several big dCache system(s)?
 - Will network I/O be a bottleneck for a large cluster in data-intensive computing environment?
 - How to avoid unnecessary data I/O and network I/O on Linux farm nodes?
 - Other issues not aware of yet?

Experiences and issues

- Read pool servers shares nodes with computing.
 - Utilizing idle disks on compute nodes.
 - Hybrid model works fine.
 - Write pool servers
 - Much higher access rate.
 - Should run on dedicated servers.
 - Crashed frequently in the past when sharing node with computing.
 - Dedicated servers solved the problem.
 - **•** XFS shows better performance than EXT3.

- SRM pinManager crashed a lot when SRM clients read from dCache to off-site even with mild rate.
 - FNAL provided a temporary fix and is also working on long-term solution.
- FTS doesn't support srmcopy
 - All data traffic had to go over a limited number of GridFtp doors during SC3.
 - No direct data traffic to write pools; Contradiction with scalability.

- PNFS bottleneck problem.
 - Continuous write with the rate 1000 times/hour seemed causing very high load (>20) on PNFS core server.
- How to split an existed big directory into multiple database?

- No support for GridFTP 3rd party transfer
 - ^{3rd} party transfer is very common in grid
 - SRM supports 3rd part transfer, however not deployed on all sites.
 - Next version of USATLAS production system will use srmcp for third party transfer.

- System administration
 - Not easy in early phase.
 - Much better later
 - Great help from DESY and FNAL dCache project team.
 - More documents
 - Bugs fixed in software.
 - Tools developed to avoid, detect and solve problems.

- Big size (>2G) log file caused the door off-line.
 - Solution: logroate daily
- 2GB limitation on PNFS gdbm database size
 - Solution:
 - Multiple databases
 - Use Postgres as PNFS database system (no 2GB limitation).
 - Issues: performance issue with large database.
- Client process hangs up when pool crashes in the middle of transfer.

- Sometimes, GridFTP connection couldn't be closed properly.
- Other issues
 - A list was sent to dCache team.

Suggestion

- Build a forum for dCache administration discussion.
 - Consortium of developers and site administrators
 - Sharing issues, solutions and experiences.
 - Decreasing the burden on developers.
 - No redundant questions for developers.
 - Admin can help answer questions too.
 - New site admins can benefit a lot.

Suggestion (Cont.)

System administration manual

- Much better manual now compared to last year.
- Still need more details, especially on system tuning.
- Maybe experienced site admins can contribute too.

Suggestion (Cont.)

- Sharing system administration and monitoring tools
 - Additional monitoring tools at FNAL.
 - Into standard package?
 - Site admins can contribute useful self-made tools of common interests.

