
DCACHE, LCG STORAGE ELEMENT AND ENHANCED USE CASES

Patrick Fuhr mann, for t he dCache tea m

DESY, Hamburg, HH 22607, Ger many

Abstract
The technology p resente d within t his pa per

has p roven to be capable of m a naging the
s torage an d exchange of several hun dre ds of
tera bytes of da ta, t ra ns parently dis t ribu te d
a mong do zen s of disk s to rage no des. One of
the key design fea tures of the dCache is tha t
although the location and m ul tiplicity of t he
data is au tono mously de ter mined by the
sys te m, based on configuration, cpu load and
disk space, t he na me s pace is uniquely
represente d within a single file syste m t ree. The
sys te m has shown to significantly improve the
efficiency of connecte d tape s torage syste ms,
through caching, 'gather & flush' an d scheduled
s taging techniques. Further more, it op timizes
the t hroughp u t to and fro m da ta clien t s as well
as s moot hing the load of t he connected disk
s torage nodes by dyna mically replicating
datase t s on the de tection of load ho t spo ts. The
sys te m is toleran t agains t failures of its da ta
servers which enables a d minis t ra tors to go for
com mo dity disk s to rage co mponents. Access
to the da ta is p rovided by various ft p dialects,
including gridf tp, as well as by a na tive
p ro tocol, offering regular file syste m opera tions
like open / read / write / seek / s ta t / close.
Fur ther more t he sof tware is coming with an
implementa tion of the Storage Resource
Manager pro tocol, SRM, which is evolving to an
open s tandar d for grid mid dle - ware to
com m u nicate with si te s pecific s torage fabrics.

Contributors
The sof tware is being developed by the

Deutsches Elektronen Synchro tron (DESY) in
Hamburg, Germany[1] and the Fermi National
Laboratory, Batavia Chicago,IL, USA [2].

File name space and dataset location
dCache strictly separates the filename space

of its data repository from the actual physical
location of the datasets. The filename space is
internally managed by a database and
interfaced to the user resp. to the application
process by the nfs2 /3 [9] protocol and through
the various ftp filename operations. The
location of a particular file may be on one or
more dCache data servers as well as within the

repository of an external Tertiary Storage
Manager. dCache transparently handles all
necessary data transfers between nodes and
optionally between the external Storage
Manager and the cache itself. Inter dCache
transfers may be caused by configuration or
load balancing constrains. As long as a file is
transient, all dCache client operations to the
dataset are suspended and resumed as soon as
the file is fully available.

Maintenance and fault tolerance
As a result of the name space and data

separation, dCache data server nodes,
subsequently denoted as pools, can be added
at any time without interfering with system
operation. Having a Tertiary Storage System
attached, or having the system configured to
hold multiple copies of each dataset, data
nodes can even be shut down at any time.
Under those conditions, the cache system is
extremely tolerant against failures of its data
server nodes.

Data access methods
In order to access dataset contents, dCache

provides a native protocol (dCap), suppor ting
regular file access functionality. The software
package includes a c- language client
implementa tion of this protocol offering the
posix open / read / write / s eek / s t a t / c lose calls.
This library may be linked against the client
application or may be preloaded to overwrite
the file system I/O operations. The library
support s pluggable security mechanisms where
the GssApi (Kerberos,gsi) and ssl security
protocols are already implemented.
Additionally, it performs all necessary actions
to survive a network or pool node failure. It is
available for Solaris, Linux, Irix64 and windows.
Furthermore, it allows to open files using an
http like syntax without having the dCache nfs
file system mounted. In addition to this native
access, various FTP dialects are supported, e.g.
GssFtp (kerberos) [8] and GsiFtp (GridFtp) [7].
An interface definition is provided, allowing
other protocols to be implemented as well.

Tertiary Storage Manager connection

Although dCache may be operated stand
alone, it can also be connected to one or more
Tertiary Storage Systems. In order to interact
with such a system, a dCache external
procedure must be provided to store data into
and retrieve data from the corresponding store.
A single dCache instance may talk to as many
storage systems as required. The cache
provides standard methods to optimize access
to those systems.

Whenever a dataset is requested and cannot
be found on one of the dCache pools, the cache
sends a request to the connected Tape Storage
Systems and retrieves the file from there. If
done so, the file is made available to the
requesting client. To select a pool for staging a
file, the cache considers configuration
information as well as pool load, available space
and a Least Recently Used algorithms to free
space for the incoming data. Data, written into
the cache by clients, is collected and, depending
on configuration, flushed into the connected
tape system based on a timer or on the
maximum number of bytes stored, or both. The
incoming data is sorted, so that only data is
flushed which will go to the same tape or tape
set. Mechanisms are provided that allow giving
hints to the cache system about which file will
be needed in the near future. The cache will do
its best to stage the particular file before it's
requested for transfer. Space management is
internally handled by the dCache itself. Files
which have their origin on a connected tape
storage system will be removed from cache,
based on a Least Recently Used algorithm, if
space is running short. Space is created only
when needed. No high /low watermarks are
used.

Pool Attraction Model
Though dCache distributes datasets

autonomously among its data nodes,
preferences may be configured. As input, those
rules can take the data flow direction, the
subdirectory location within the dCache file
system, storage information of the connected
Storage Systems as well as the IP number of the
requesting client. The cache defines data flow
direction as getting the file from a client,
delivering a file to a client and fetching a file
from the Tertiary Storage System. The simplest
setup would direct incoming data to data pools
with highly reliable disk systems, collect it and
flush it to the Tape Storage System when
needed. Those pools could e.g. not be allowed
to retrieve data from the Tertiary Storage
System as well as deliver data to the clients.
The commodity pools on the other hand would

only handle data fetched from the Storage
System and delivered to the clients because
they would never hold the original copy and
therefore a disk /node failure wouldn't do any
harm to data integrity. Extended setups may
include the network topology to select an
appropriate pool node. Those rules result in a
matrix of pools from which the load balancing
module, described below, may choose the most
appropriate candidate. Each row of the matrix
contains pools with similar attraction.
Attraction decreases from top to bottom.
Should none of the pools in the top row be
available, the next row is chosen, a.s.o..
Optionally, stepping from top to bottom can be
done as long as the candidate of row 'n' is still
above a certain load. The final decision, which
pool to select of this set, is based on free space,
age of file and node load considerations.

Load Balancing and pool to pool
transfers

The load balancing m o d ule is, a s described
above, the second s tep in the pool selection
p rocess. This m o dule keeps itself u p da ted on
the nu m ber of active da ta t r ansfers and the age
of t he leas t recently used file for each pool.
Based on this set of infor mation, t he m os t
ap pro priate pool is chosen. This mechanis m is
efficien t even if reques t s are ar riving in
bunches. In o ther words, as a new reques t
comes in, the scheduler already knows abou t
the overall s ta te change of t he whole syste m
triggered by the p revious request though this
s ta te change migh t no t even have fully evolved.
Syste m ad minis t ra tor s may decide to m ake
pools with un use d files m ore at t rac tive t han
pools with only a s mall nu mber of movers, or
so me combination. Star ting a t a cer tain load,
pools can be configured to t ransfer da tase ts to
o ther, less loaded pools, to s mooth the overall
load pa t tern. At a cer tain poin t, pools m ay even
fetch a file fro m the Tertiary Storage Syste m
again, if all pools, holding the reques te d da tase t
are too busy. Regulations are in place to
sup p ress chaotic pool to pool t ra nsfer orgies in
case t he global load is s teadily increasing.
Fur ther more, the maximu m n u m bers of replica
of the sa me file can be defined to avoid having
the sa me se t of files on each node.

File Replica Manager

A firs t version of t he so called Replica
Manager is currently un der evaluation. This
m o d ule enforces tha t a t leas t N copies of each
file, dis t ributed over differen t pool nodes, m u s t
exis t within t he syste m, bu t never m ore than M

copies. This app roach allows to shu t down
servers without affecting sys te m availability or
to overco me node o r disk failures. The
ad minis t ra tion interface allows to announce a
scheduled node shu t d own to t he Replica
Manager so tha t it can adjus t t he N to M
interval.

Data Grid functionality
In t he context of t he LHC Comp u ting Grid

Project [4], a Storage Elemen t describes a
m o d ule p roviding m a ss da ta to local Comp uting
Elements. To let a local Storage Syste m look like
a Storage Element, a set of con ditions m u s t be
met. Storage Elements m u s t be able to
com m u nicate to each other in orde r to
exchange m ass da ta be tween si tes run ning
differen t Storage Syste m an d Storage Elements
have to p rovide local da ta t h rough s tandard
met ho ds to allow GRID jobs to access da ta files
in a si te indepen den t m a n ner. The firs t
require me nt is covered by a p ro tocol called t he
Storage Resource Manager, SRM [3], defining a
se t of com man d s to be imple mente d by the
local Storage Syste m to enable re mo te access. It
m ainly covers q ueries about the availability of
datase t s as well as com ma nds to p repare da ta
for re mote t ransfer and to negotia te
ap pro priate t ransfer m echanisms. dCache is
p roviding an SRM interface and has p roven to
be able to talk to o the r imple men ta tions of the
SRM. A dCache syste m at FERMI is successfully
exchanging da ta with t he CASTOR Storage
Manager a t CERN using the SRM pro tocol for
high level com m u nication an d GridFtp for t he
actual da ta t ransfer. The secon d req uire men t,
to m ake local files available to Grid
Applications, is ap proache d by the GFAL
initiative, a quasi s tan dard as well. It offers well
defined, posix like function calls t ha t allow site
indepen dent access to files held by t he local
Storage Element. Optionally GFAL can talk to
o ther grid m o d ules to regis ter impor ted files or
files being expor table. GFAL developers at CERN
have successfully linked the GFAL library
agains t t he dCache dCap library.

Conclusion
The cur ren tly available imple men ta tion of the

dCache dis t ribu ted disk s torage syste m is
covering a wide range of ap plications, s tar ting
fro m two s torage no des and no t ending with
m ore t han 100 Tbytes of m a naged disk s torage
dis t ribu te d over several hun d red of s torage
nodes. dCache m akes u se of connected ter tiary

s torage m a nagers if available. If no t, dCache
takes care t ha t sufficient da tase t redu n da ncy is
p roduced to survive individual pool no de
failures. dCache p rovides all necessary da ta and
infor mation access p ro tocols to sa tisfy t he
definition of a LCG Storage Elemen t. This
includes dCap, gsiFtp, Srm an d GRIS. Beside t he
technical a spects of t his technology, t he dCache
tea m is eager to, an d already succeeded in
dis t ribu ting knowledge abou t ins tallation,
configuration and m a nage men t of dCache
sys te m s over a growing co m m u nity. This will
decrease t he initial bar rier for newco mers to
beco me fa miliar with t he sys te m an d should
sim plify t he cus to mization of si te specific
needs. In addi tion to t ha t, www.dCache.ORG
p rovides docu men ta tion, a t rouble ticket
sys te m and a user discussion foru m. In
corpora tion with an increasing n u m ber of si tes
u sing our t echnology, we got t he impression
that dCache is well suited to solve a wide range
of s torage an d da ta dis t ribu tion issues f ro m
very s mall u p to very large ins ti tu tion.

REFERENCES
[1] DESY : http: / /www.desy.de
[2] FERMI : http: / /www.fnal.gov
[3] SRM : http: / / s d m.lbl.gov/s r m - wg
[4] LCG : http: / / lcg.web.cern.ch /LCG/
[5] CASTOR Storage Manager :

http: / / c as tor .web.cern.ch /cas to r /
[6] dCache Documenta tion :

http: / /www.dcache.org
[7]GsiFtp http: / /www.globus.org /

datagrid / deliverables /gsiftp - tools.html
[8] Secure Ftp :

http: / /www.ietf.org / rfc / r fc2228. txt
[9] NFS2 : http: / / www.ietf.org / r fc / r fc1094. txt
[10] Fermi CDF Experiment : http: / /www -

cdf.fnal.gov
[11] Fermi Enstore

http: / /www.fnal.gov/docs / p r o ducts / e n s to r
e/

[12] GridKA : http: / /www.gridka.de /
[13] Cern CMS Experiment :

http: / / c m sinfo.cern.ch
[14] Cern LHC Project :

http: / / lhc.web.cern.ch /LHC
[15] Grid GFAL

http: / / lcg.web.cern.ch /LCG/peb /GTA /GTA-
ES/Grid- File- AccessDesign - v1.0.doc

[16] Tivoli Storage Manager :http:/ / www -
306.ibm.com / s of tware / t ivoli /p roducts / s to r
age- mgr /

