
Chimera - a new, fast, extensible and Grid enabled namespace service

Author: Mr. Mkrtchyan Tigran, Dr. Fuhrmann Patrick, Mr. Gasthuber Martin
DESY, Hamburg, Germany

Abstract
After successful implementation and deployment

of the dCache system over the last years, one of the
additional required services, the namespace service, has
faced additional and completely new requirements. Most of
them are caused by the scaling of the system, the
integration with Grid services and the need for redundant
(high availability) configurations. The existing system,
having only NFSv2 access path, is easy to understand and
is well accepted by the users. This single 'access path' limits
data management task of making use of classical tools like
'find', 'ls' and others. This is intuitive for most users, but
failed while dealing with millions of entries (files) and
more sophisticated organisational schemes (metadata). The
new system should support a native programmable
interface (deeply coupled, yet fast), a 'classical' NFS path
(now version 3 at least), a dCache native access and an
SQL path allowing any type of metadata to be used in
complex queries. Extensions with other 'access paths' will
be possible. Based on the experience with the current
system we highlight on the following requirements:

➢ large file support (64 Bit) + large number of files (>108)
➢ fast
➢ platform independence (runtime + persistent objects)
➢ Grid name service integration
➢ custom dCache integration
➢ redundant, high available runtime configurations

(concurrent backup etc.)
➢ user accessible metadata (store and query)
➢ ACL support
➢ pluggable authentication (e.g. GSSAPI)
➢ external processes can register for namespace events

(e.g. removal/creation of files)

A detailed analysis of the requirements, the chosen design
and selection of existing components will be discussed. The
current schedule should allow to show the first prototype
results.

THE PROJECT GOAL
Modern experiments produce terabytes of data,

which has to be managed by tape storage systems. While
the user-intuitive way to access data is through filenames,
the storage systems normally deal with tapes, offsets and
disks. A system, which could have a filesystem view from
one side and interact with storage system from the other
side became crucial. Based on our experience and actual
needs a list of requirements was compiled:

• Unique file ID independent from name
Filenames are not persistent, while data is. We can
rename files, but still be able to access original data;

• Name-to-ID and vice versa mapping
By referencing files in storage system by ID we
need a possibility to find the file ID while users will
operate by filenames;

• Callback on filesystem evens, like remove and move
Removing a file in the filesystem has to trigger an
associated action of file removal in the storage
system. Moving a file from one directory to another
may trigger a migration of the file from one storage
system to another;

• Directory tags, inherited by subdirectories
possibility to define default values, like OSM-group
or file-family dependence, or to which tape-set a file
have to reside in. Usually, directories are created
prior files, and de-facto become a natural holder of
initial values;

• Metadata association with files
arbitrary metadata can be associated with files, in
particular storage system specific information like
tape name, offset and so on;

• Worm holes
A convenient feature: files that are not shown in the
directory listing, but are available in all directories.
Can be used for distributing configuration files;

• Additional channel for the client to access metadata
client applications have to be able to store and
retrieve metadata.

CURRENT SOLUTION
In 1997, we have introduced PNFS[1] – an NFS

server on top of a database. PNFS allows all NFSv2
operations except actual data IO. The data access is
performed by native store/retrieve utilities of the storage
system. The implementation is based on user-space NFS
daemon, which communicates with the DB-server through
a shared-memory block. The DB-server simulates a
filesystem on top of gdbm. Each subdirectory can have its
own DB-server, which runs as a separate process. Access
to metadata is done through special file name syntax.

Currently there are two HEP labs that heavily rely
on PNFS – DESY and FNAL, and few others that use
PNFS as a component of dCache in LCG2. At DESY we
have 55 DB-server processes, serving more than 3 million
file entries, which corresponds to 500TB of data in HSM
with 1KHz access rate. All databases together uses 20GB
disk space.

PNFS is being used by various storage systems –
Enstore[2], OSM, dCache[3]. Enstore and OSM store
references to files – “bit file IDs”, which are used by HSM
to identify files. dCache stores file locations, e.g. pool
names. In the past some experiment-specific file access
libraries used to store file locations in SHIFT pools, now
replaced by dCache.

Despite successful deployment of PNFS, we
found spots which may cause limitations in future.

➢ Max. file size 2 GB due to NFSv2 specification
➢ Metadata access only through NFS:
 no direct path for attached storage systems;
 all metadata types use the same channel and the

store:
 heavy access to metadata by storage system has

performance impacts on regular NFS
operations;

➢ Metadata are stored as BLOB:
 no metadata query functionality;

➢ No ACLs
➢ NFS security (= no security), although we can disable

some NFS operations (remove)

NEW IMPLEMENTATION
While the file size limitation is solved by new NFSv3 front-
end, metadata access path needs changes in design. Since
we heavily depend on metadata stored in PNFS, a high
throughput access to metadata becomes crucial for very
large installations. In the mean time, the main “customer”,
dCache, was modified to optionally store instance
metadata, cacheinfo, in private database. We consider two
possible solutions: using a filesystem with DMAPI[5] (Data
management API) support, like JFS or XFS, or simulating a
filesystem on top of RDBMS. Each approach has it's own
advantages and disadvantages:

Table 1: RDBMS evaluation
Advantages of RDBMS Disadvantages of RDBMS

Query Language
Automatic database

partitioning
Backup
Consistency check
Triggers
Stored procedures
JDBC/ODBC makes

implementation
independent

Difficult to put filesystem
tree into tables

Performance with growing
number of clients and
entries not
investigated.

Table 2: DMAPI evaluation
Advantages of DMAPI Disadvantages of DMAPI

Well known
Vendor support
Existing implementations

for SGI, Linux, Solaris
Existing backup tools
Data Management API
Posix ACL's
Can be shared by any

known protocol

Still metadata and filenames
in the same location

No directory tag
inheritance.

No wormholes with
standard sharing
protocols (NFS)

Possibly, a combination of both approaches will be taken.

The original idea of implementing a GRID Replica
Catalogue as a core component was prohibited. The
Replica Catalogue interface will become one of the
external access interfaces.

Pic. 1

It's obvious that nowadays the UNIX permissions are
insufficient for many applications, especially in GRID
context. Most of modern filesystems support ACLs. The
choice here is not obvious either:

• NT ACL's
• POSIX ACLs (many drafts, no actual standard)

Posix 1003.6 draft 13;
Posix 1003.1e draft 15;

• UNIX Variants
Based on various Posix drafts, with some extensions;

• DCE (AFS) ACLs
based on draft 13 with a fair number of extensions;

• GRID-map file
More or less UNIX-like – readers/writers;

In addition POSIX(UNIX) and NT ACLs have a different
behaviour:

Posix – uid/gid based, first/best match
NT – SID (principal) based, order independent

(Posix draft 13 corresponds to a subset of NT ACL's.)

While most of HEP applications are UNIX-based,
we have seen growing demand of GRID-based access,
where user DN(Distinct Name) replaces the uid. Currently,
our strategy moves in direction of NT ACL's, at least the
subset used by POSIX plus principal handling, but it's still
under discussions.

CONCLUSIONS AND OUTLOOK
During the decades of deployment PNFS has done

a decent job being stable, robust and flexible. To keep that
high standard also in the future it needs some modifications
and additions. The NFSv3 front-end exists and is currently
in the test phase. A running prototype of an RDBMS based
filesystem simulation is available and currently being tested

in terms of performance and scalability. We are in contact
with DMAPI-enabled filesystem developers to check out
all needed functionality in DMAPI and underlying
filesystems. During design evaluation, GRID Replica
Catalogue concept shifted from core functionality area to
optional access interface. The situation with ACLs is not
fully clear yet and we are in contact and discussions with
other developers. Although we are familiar with enstore,
osm and dCache, a provided solution will help to manage
other storage systems as well.

Investigations are needed to choose the most
appropriate solution and, like mythological chimera*, we
need to involve several technologies to achieve our goal.

REFERENCES
[1] http://www-pnfs.desy.de/
[2] http://hppc.fnal.gov/enstore/index.html
[3] http://www.dcache.org
[4] http://www.ietf.org/rfc/rfc1813.txt
[5] http://www.opengroup.org/pubs/catalog/c429.htm

* An animal from ancient Greek mythology with a lion’s
head and foreparts, a goat’s body, a dragon’s rear, and a tail
in the form of a snake.

